Pixel-Perfect Piloting: Superhuman Control of
Pixelcopter via Reinforcement Learning

Tai Vu Brad Nikkel Jenny Yang
Computer Science Symbolic Systems Computer Science
Stanford University Stanford University Stanford University
taivu@stanford.edu bnikkel@stanford.edu jjyangl@stanford.edu
Abstract

The field of reinforcement learning has been growing constantly in the last few
years, with a wide range of practical applications in automated game playing.
Reinforcement learning enables an agent to learn the game environment without
supervision and then devise optimal strategies to beat the game. This study provides
a comprehensive comparative analysis of reinforcement learning (RL) algorithms
for mastering the arcade game Pixelcopter, a sparse-reward environment. We
implement and evaluate a range of value-based and policy-based methods, including
variations of Q-Learning, Sarsa, Action Value Function Approximation, and Policy
Gradients, enhanced with techniques like eligibility traces. All implemented models
learned to play the game effectively and achieved superhuman performance. The
Sarsa(\) algorithm proved most effective, achieving a peak score of 379 and an
average score of 47.03. This work offers valuable insights into the relative strengths
and convergence properties of different RL approaches, highlighting the critical
impact of hyperparameter optimization in complex, dynamic control tasks.

1 Introduction

Reinforcement Learning (RL) has emerged as a leading paradigm in artificial intelligence, enabling
agents to achieve superhuman performance in complex sequential decision-making tasks, most
notably in the domain of games. From mastering the ancient game of Go to conquering a suite of
classic Atari titles, RL algorithms have demonstrated a remarkable ability to learn optimal strategies
directly from environmental interaction, often without any prior human knowledge. These games
serve as powerful and challenging benchmarks for RL research, particularly those with sparse reward
structures—where feedback is infrequent—which mirrors the complexities of many real-world
problems [11].

This paper investigates the application and comparative performance of various RL algorithms on
Pixelcopter, a dynamic arcade game that, despite its simple controls, presents a significant challenge.
In Pixelcopter, an agent must navigate a continuously scrolling, procedurally generated cave, avoiding
obstacles with only two possible actions: "ascend" or "do nothing." [3]. Figure 1 shows a screenshot
of the gameplay as the player avoids the vertical barrier as well as the cave floor and ceiling. This
combination of a continuous, high-velocity state space and a sparse reward signal (a point is awarded
only for clearing an obstacle) makes it an ideal environment for testing the limits of modern RL
techniques.

To this end, we implement and rigorously evaluate a comprehensive suite of foundational RL
algorithms. We explore both value-based methods, including several variations of Q-Learning and
Sarsa, and policy-based methods, specifically Policy Gradients. Our analysis demonstrates that all
implemented agents successfully learn to play Pixelcopter at a level that surpasses human performance.
Notably, we find that Sarsa(\), an on-policy method enhanced with eligibility traces, achieves the
highest performance, reaching a maximum score of 379. This paper will detail our modeling of the



environment, delve into the specifics of each algorithmic approach, and present a thorough analysis
of our experimental results and key findings.

Figure 1: An Example Game of Pixelcopter

2 Related Work

The application of reinforcement learning (RL) to master video games has a rich history, serving as a
critical benchmark for algorithmic development. One example is Brendan et al., which combined
Q-Learning with policy gradients to attain high scores in a number of Atari games [9, 15]. Another
example is Volodymyr et al., which offered a seminal, powerful approach of combining convolutions
neural networks with Q-Learning by inputting arcade games’ image pixels to find a value function
that estimates future rewards [7].

Extant machine learning (ML) literature using Pixelcopter specifically is rather sparse. However,
Pixelcopter is structured similarly to Flappy Bird, a popular game where the player must avoid the a
continuous stream obstacles to survive. Flappy Bird has the same action space as Pixelcopter and can
be described with the same state features. The wealth of research on Flappy Bird therefore provides
a valuable foundation for our study. For example, Thurler et al. implemented genetic algorithms,
Q-Learning, and actor-critic models. While all approaches could learn the game, Thurler et al. found
that the genetic algorithms could reach the goal of never losing [13, 14].

Furthermore, there is some recent research on generalizing gameplay from simple computer games
like Flappy Bird to more complex games in the real world. For example, Du et al. utilized mod-
ifications of Flappy Bird as a preliminary proof that machine learning can train human players to
learn games. This paper and other research shows that reinforcement learning methods have potential
beyond computer games and could potentially transform the way that we learn in everyday life
[5, 16, 12].

Specific prior work on Pixelcopter includes a study by Mysore et al., which investigated the efficiency
of actor-critic models. They found that using independent network structures for the actor and critic
was more effective in resource-constrained environments than sharing a single network structure
[8, 17]. Our work builds upon these foundations by providing a broad, comparative analysis of
several foundational RL algorithms—including Q-Learning and Sarsa variants—applied specifically
to Pixelcopter. We aim to fill a gap in the literature by systematically evaluating and optimizing these
methods in the Pixelcopter environment to determine their relative efficacy.

3 Model

3.1 States

In our model, each state is a dictionary that contains 7 features, as described in Table 1. The terminal
state occurs when the agent hits the ceiling, floor, or barrier and thus ends the current game.

In addition to using raw feature values, we experimented with a discretization approach in order to
reduce the size of the state space and speed up the training process. This corresponds to dividing
the original game screen of size 48 X 48 into discrete grids of size s X s for a discretization level



Feature Description

Y The player’s vertical position

v The player’s velocity

d. The player’s vertical distance to the ceiling

ds The player’s vertical distance to the floor

dn The player’s horizontal distance to the next block

Yt The vertical position of the top part of the next block

Ub The vertical position of the bottom part of the next block

Table 1: State representation of Pixelcopter

s. Every point in a grid would share the same feature value. Particularly, for a real number n and a
discretization factor s, we applied the following discretization function.

s =s|"|

S

3.2 Actions

At each time step, there are 2 possible actions: 0 and 1, which represent "moving down" and "moving
up" respectively.

3.3 Rewards

The original game emulator produces a reward of 1 every time the player passes a block. In all other
cases, the reward is 0. We believed that this sparse reward scheme would slow down the convergence
of our algorithms, because the agent received a reward of 0 most of the time. Therefore, we defined
the reward function as follows:

3 if the agent successfully passes a block
R(s,a) = ¢ —2000 if the agent hits a block and loses the game (terminal state)
1 if the agent survives at the current time step without hitting anything

Intuitively, a negative reward of high magnitude like —2000 would discourage the model from
entering the terminal state. Meanwhile, a small "survival bonus" of 1 encourages life preservation,
even if the player has not yet passed a block, so it would avoid moving randomly between consecutive
blocks. Hence, this approach helps speed up the training process.

4 Algorithms

4.1 Baseline
We applied a random policy as a baseline algorithm. Specifically, at each state, the agent randomly
picks one of the two actions (up or down) with probabilities p and 1 — p respectively. We selected

p = 0.5 in this case. This was a good starting point, because it was simple to implement and clearly
defined a baseline strategy that a well-trained algorithm should outperform.

4.2 Q-Learning
Q-Learning is an off-policy algorithm that aims to estimate the action value function Q(s, a). Specif-

ically, for each training example (s, a,r, s’) that contains a state s, an action a, a reward r, and a
subsequent state s’, this method applies the following incremental update rule:

Qs,0)  Q(s,0) + (1 +ymax Q(s',a') - Q(s,a))

In this formula, « is a learning rate, and +y is a discount factor.



4.3 Sarsa

Sarsa is an on-policy algorithm that also estimates the action value function Q(s,a). However,
instead of maximizing over all possible actions, Sarsa utilizes the next action a’ to update Q. For
each training example (s, a,r, s’,a’) that contains a state s, an action a, a reward r, a subsequent
state s’, and a subsequent action a’, this technique performs the following update rule:

Q(S, CL) — Q(Sva) +a (T‘ + 'YQ(S/’ a/) - Q(Sa a))

where, as with Q-Learning, « is a learning rate, and -y is a discount factor.

4.4 Action Value Function Approximation

In this approach, we model the action value function using a parametric form Qy(s, a) with some
parameter 6. Then, we minimize the loss between the estimate Qg (s, @) and the optimal action value
function Q* (s, a), which is defined as:

1 *

) =5 E (@ (s,a) - Quls,a)’
2(s,a)~7r*

where Q* (s, a) can be estimated as Q*(s,a) ~ r + ymax, Qo(s’, a’).

This can be done by performing the following gradient descent update:

00+« (r + ’YH}?XQQ(SI, a') — Q@(s,a)) VoQo(s,a)

In this study, we model Qy(s,a) with a feed-forward neural network with 2 hidden layers. The
network takes as inputs the state representation of s and then outputs two values in the last layer,
which corresponds to the action values for a = 0 and a = 1. We chose this modeling technique
instead of inputting (s, a) into the network and outputting a single number because our approach
takes advantage of parameter sharing, which allows the model to learn the action value function for
both @ = 0 and @ = 1 at the same time in each gradient descent update.

4.5 Policy Gradients

Policy gradients differ from Q-Learning and Sarsa’s value-based approach by instead optimizing
the policy directly by learning a probability distribution for actions given the state space. We used a
"rewards-to-go" policy gradient that generates trajectories 7 = {(s1,a1,71) - - - (8¢, a¢, 1) } where ¢
is the total steps until Pixelcopter reaches its terminal state, and s;, a;, and r; are the i-th state, action,
and reward, respectively, in trajectory 7. Then, where R(7) is the discounted rewards of trajectory 7
and g is our parameterized policy, we find:

max E,,R(T)
by performing a gradient ascent update:
0« 0+ aVeE., R(T)
where « is the learning rate. This is simplified by employing logarithms to get: [6]
t

VU =E | Vglogme(ai|si)y' " R(7)

i=1
where +y is the discount factor. Policy Gradient gradually takes steps towards a policy that maximizes
the expected discounted return of trajectories.



4.6 Additional Strategies
4.6.1 e-greedy Exploration

In order to manage the trade-offs between exploration and exploitation, we leveraged e-greedy
exploration. Specifically, for each state s, the agent chooses a random action with probability e;
otherwise, the agent picks the greedy action a* = arg max, (s, a). For our e-greedy strategy, we
experimented with decaying e slightly per training iteration (with some decay factor) toward some
minimum floor e.

4.6.2 Forward and Backward Updates

Normally, in Q-Learning and Sarsa, we performed the update formula in a forward order (from the
first frame to the last frame in a sampled trajectory). However, we also experimented with backward
updates, which apply the update rule in the opposite direction. We believed that this practice would
allow important information (like hitting a block or hitting the cave’s floor or ceiling) to propagate
faster through the state space.

4.6.3 Eligibility Traces

We also implemented Q-Learning and Sarsa with eligibility traces (Q()) and Sarsa(\)). Eligibility
traces can speed up learning of sparse rewards by propagating rewards back in time with an exponential
decay parameter \. To do this, we modify the above Q-Learning and Sarsa algorithms by adding the
temporal difference update J:

o=r + PYQ(S/aa/) - Q(&(I)
where s’ and a’ and the current state-action pair and s and a and the previous state-action pair.
h "and o’ and th t state-action p d d dthe p tate-action p

Every state-action value function is then updated as:
Q(s,a) < Q(s,a) + adN(s,a)

where N (s, a) is a count of the times a state-action pair has been visited.

Finally, state-action visit counts are decayed via the the discount, v, and the exponential decay, A:
N(s,a) + yAN(s,a)

Given that eligibility traces are most impactful in sparse-reward environments [6] like Pixelcopter,
we hypothesized that eligibility traces may yield an improvement upon the vanilla Q-Learning and
Sarsa models.

4.6.4 Nearest Neighbors

Because each state has 7 features, when the model begins training there are many unseen states. As a
result, we implemented nearest neighbor approximation to approximate unseen states to a seen state.
For each unseen state, we found the nearest seen state, calculated with Euclidean distance using all 7
features of the state. Thus, the approximate value function is

U()(S) = 91

where

i = arg min (sj,$)

and d(a, b) represents the Euclidean distance between two states a and b.

The performance with nearest neighbor approximation was similar to randomly selecting an action
for unseen states. We hypothesize that this is due to two factors. First, the distance function abstracts
7 features into a single number, which can only generally capture the similarity between two states.
Second, the action space has only two actions, so randomly selecting an action is a sufficiently good
baseline.



4.6.5 Experience Replay

In our action value function approximation algorithm, we applied experience replay in order to
mitigate the issue of catastrophic forgetting (which means that the model forgets about variable
information it learned in the past). In particular, a replay memory is used to store a fixed quantity
of the most recent experience tuples during the training pipeline. After that, this method samples a
batch of tuples uniformly and then feeds the batch to the gradient descent update.

5 Implementation

We implemented the reinforcement learning algorithms using Python [2] and PyTorch [10]. In
addition, we leveraged the Pixelcopter emulator provided by PyGame Learning Environment
(PLE) [1] and OpenAl Gym [4]. The code can be found at https://github.com/taivu1998/
Pixelcopter-RL.

6 Experiments and Results

6.1 Evaluation Metrics

We use the total score as a evaluation metric for our models. In each game, the player gets 1 point
when passing each vertical block, so the final score is equal to the total number of blocks that the
player passes during that game.

6.2 Experiment Setup

Given our goal was to maximize the score for each model, we extensively experimented with
hyperparameters to optimize each model for a high score. We utilized the same random seed
throughout our experiments and evaluated the mean, standard deviation, minimum, and maximum
scores for one hundred evaluation epochs per every thousand training epochs to get a sense of how
each model learned over time.

Beyond the discretization-factor, which we discuss later, we found one of the more influential
hyperparameters to be the discount factor. The ideal discount factor varied significantly between
models. For example, 0.96 and 0.95 discount factors produced the highest mean scores for Policy
Gradient and Sarsa respectively, while a 0.9 discount factor fared better for Q-Learning and 0.92 was
ideal for Q-Learning Nearest Neighbors. Typically, if we lowered the discount factor too low, the
training time decreased in concert with the mean score.

Next, the amount of training epochs needed to reach a high score varied considerably amongst models.
We found that Q-Learning and Sarsa, and Q-Learning Nearest Neighbors took approximately 50,000
training epoch reach their maximum scores, whereas Q(A) and Sarsa()\) took approximately 10,000
training epochs. Q-Learning Function Approximation took approximately 500,000 training epochs
to achieve a score modestly better than random. This demonstrated to us that our different models
would be more or less appropriate depending on computing resources and time allocated to training.

Our models’ optimal learning rates varied considerably too. Our ‘rewards-to-go’ Policy Gradient
needed a small initial learning rate of approximately 0.0001 to train well and we found that decaying
Policy Gradients learning rate very slightly each training epoch helped achieve a higher mean score.
Policy Gradient’s optimal learning rate range was considerably smaller than our Q-learning and Sarsa
variants’ optimal learning rate range of 0.01-0.04.

The optimal setting for Q(\) and Sarsa(\)’s eligibility traces was generally in the range 0.9-0.92 and
our optimal epsilon range, 0.01-0.02, was the hyperparameter was the most consistent across all our
models. Since we decayed our epsilon slightly after every training epoch, we found that an optimal
epsilon was best adjusted slightly higher with increased training epoch and vice versa to encourage
more early exploration or less dependent on the number of training iterations.


https://github.com/taivu1998/Pixelcopter-RL
https://github.com/taivu1998/Pixelcopter-RL

Algorithm Min Max Average Std.Dev. Train Time

Baseline (random) 0 4 0.117 0.371 N/A
Q-Learning 2 253 30.963 25.853 45:46
QW) 6 249 35.127 28.549 19:39
Q-Learning (nearest neighbors) 0 213 33.241 27.852 28:39
Sarsa 6 319 39.215 34.081 42:40
Sarsa(\) 4 379 47.030 36.245 2:21:48
Policy gradients 3 221 22.141 18.492 08:25
Action value function approximation 2 36 6.264 5.174 1:01:41

Table 2: Performance of Different Algorithms

All Model Mean Scores per Thousand Training Epochs

—s— Q-Learning

—— Q-lambda

—e— Sarsa

ol Sarsa-Lambda

—s— Q-Learning Nearest Neighbors

—e— Q-Learning Function Approximation
Policy Gradient

A

30 4

204

Mean Score (1 point per barrier passed)

T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Thousand Training Epochs

Figure 2: All Models’ Mean Scores (per 1000 iterations)

6.3 Results
6.3.1 Model Performance

We ran all our models with many different hyperparameters and recorded their respective maximum
score results in Table 2. We can compare different techniques based on their maximum and average
scores, which represent the agents’ peak performance and performance consistency respectively. We
can see that all the models significantly outperformed the baseline algorithm. In addition, the Sarsa(\)
agent with (eligibility traces) performed the best, with a maximum score of 379 and an average score
of 47.03.

Figure 2 illustrates the curves for the mean scores produced by our models during the training process.
The general upward trends of the curves demonstrate that the agents gradually learn the patterns of
the game environment and make better decisions as we train them for more iterations.

Meanwhile, the use of nearest neighbors did not seem to impact the Q-Learning algorithm, as the
models with and without nearest neighbors had relatively similar outcomes. At the same time, we can
see that traditional reinforcement learning techniques like Q-Learning, Sarsa, and Policy Gradient
performed much better than a complex, deep learning-based approach like action value function
approximation. This might be because deep neural networks are significantly harder to train, as they



must learn good representations for all states in a large state space. We were able to train the deep
learning model for a small number of epochs due to limited resources, so more training iterations
might be required in order for its parameters to converge. Were we to employ more computing
resources to achieve this, it is likely that the deep learning model would outperform our model, but
with limited training epochs, our models outperformed the deep learning model.

6.3.2 Q-Learning versus SARSA

Q-Learning & Sarsa Evaluation per Thousand Training Epochs

—— Q-Leamin: 9

(1 point per barrier

Thousand Training Epochs

Figure 3: Q-Learning and Sarsa Mean Scores per 1000 iterations

As shown in Figure 3, vanilla Q-Learning and Sarsa learned at similar rates and achieved similar
mean scores. To achieve their highest mean scores, they took similar period of time to train at
approximately 45 minutes for 50,000 training epochs. In the Q-Learning and Sarsa error bar plots, we
see that Q-Learning (Figure 8) and Sarsa (Figure 10) gradually, continuously learned more optimal
policies over 20,000 training epochs.

6.3.3 The Effects of Eligibility Traces

As shown in Figure 4, our hypothesis that adding eligibility traces would improve Q(A) and Sarsa(\)’s
mean scores compared to their vanilla counterparts was correct. We also see in Figure 4 that eligibility
traces for Q(A) and Sarsa(\) have similar performance in the first few thousand training epochs,
but after approximately 7,000 training epochs, Sarsa(\) achieves significantly higher mean scores.
Finally, it is worth noting that while Q(\) and Sarsa()) learned optimal play in fewer training epochs,
their training times (to achieving their maximum scores) did not vary significantly from regular
Q-Learning and Sarsa, meaning each training epoch tended to take significantly longer with eligibility
traces than without eligibility traces.

6.3.4 The Effects of Forward/Backward Updates

We found that backwards updates impacted the training process of Q-Learning and Sarsa, but in ways
we had hypothesized. For normal Q-learning, forward and backward updates did not significantly
affect convergence to the optimal policy. In normal Sarsa, however, we see that forward updates
vastly outperform backward updates (see Figure 6). In Q()) and Sarsa()\), we see a slightly different
pattern; both Q(X) and Sarsa(\) converged toward optimal policies significantly faster with forward
updates than they did with backwards updates (see Figure 5). This is counter-intuitive since we know
that the last state in a sampled trajectory should contain the most important information, namely the
frame where the player hits a block, initiating the terminal state. By updating the Q-Learning or Sarsa
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Figure 4: Q-Learing and Sarsa versus Q(\) and Sarsa(A) Mean Scores per 1000 iterations

in a backward order, we expected this more important experience to propagate through all the earlier
states in a single iteration, allowing the agent to quickly gain knowledge about the bad states that led
to hitting barriers and thus avoid these states in subsequent iterations. It seems that this was indeed
the case for Sarsa backwards compared to forwards.

Surprisingly, however, Q(\) and Sarsa()\) achieved significantly higher mean scores with the normal
forward update order, as shown in Figure 5. We know that Sarsa considers the next action a’ instead
of the optimal action arg max,s Q(s’, a’) as in Q-Learning. Meanwhile, Q(\) and Sarsa(\) added the
use of eligibility traces in their rule. We suspect that these differences may have negatively affected
the behavior we expected from backward updates, but more experiments are needed to answer this
question.

Q-Lambda and Sarsa-Lambda Forward-Backward Mean Scores per Thousand Training Epochs

Figure 5: Q()) and Sarsa(\) Forward-Backward Comparison: Mean Scores per 1000 iterations

6.3.5 The Effects of c-greedy Exploration

We found that decaying epsilon slightly with each update, while maintaining a floor epsilon value,
significantly benefited Sarsa and Sarsa()\) and slightly benefited Q-Learning and its variants. Particu-
larly when training for larger epochs, it was useful use epsilon decay to make Q-Learning and Sarsa
more greedy as time progressed.
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Figure 6: Q-Learning and Sarsa Forward-Backward Comparison: Mean Scores per 1000 iterations

6.3.6 The Effects of Discretization Levels

As described above, given Pixelcopter’s 7-feature state spaces of floats, we discretized our state
space by dividing the state-space floats by an integer, converting the results to integers, and then
re-scaling them. We found our discretization factor to be the most impactful hyperparameter across
our models, with the exception of action value function approximation, which was unsurprising as
action value function approximation is more suited toward continuous state spaces. We found the
ideal discretization factor range to be between 8 and 12. If we discretized our state space above
this range, our models learned faster but could not attain as high a score. When we lowered the
discretization factor below 8, the models tended to get significantly lower mean scores within the
same amount of epochs, though with many more training epochs they may have matched or exceeded
the highest means scores our models obtained in ideal 8-to-12 discretization range. This behavior can
be seen in Figure Figure 7, which shows different discretization factors effects on Sarsa(\)’s mean
scores over training epochs.

Discretization on Sarsa-Lambda: Mean Scores per Thousand Training Epochs
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Figure 7: Discretization Factors on Sarsa(\): Mean Scores per 1000 iterations

7 Conclusion

This research successfully demonstrates that the game Pixelcopter, despite its challenging dynamics
and sparse-reward environment, can be effectively mastered using a range of reinforcement learning
techniques. Our comprehensive investigation into value-based and policy-based methods confirms
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that all implemented models, including variations of Q-Learning, Sarsa, and Policy Gradients, learn
to play the game at a superhuman level, far surpassing the baseline performance.

The key finding of our comparative analysis is the superior performance of the Sarsa(\) algorithm,
which achieved a remarkable maximum score of 379 and a leading average score of 47.03. This
highlights the significant benefit of employing eligibility traces, which accelerate learning by effi-
ciently propagating reward information through the state space. Furthermore, our experiments with
hyperparameter tuning, particularly discretization levels, underscore their critical role in balancing
learning speed and peak performance. Ultimately, this work provides a rigorous case study on
the relative efficacy of foundational RL algorithms, offering valuable insights for tackling similar
sequential decision-making problems.

8 Future Work

Building on the findings of this study, several exciting avenues for future research could further
advance performance and deepen our understanding of reinforcement learning in this context.

8.1 Advanced Algorithmic Exploration

While our study focused on foundational algorithms, exploring more advanced, state-of-the-art
methods could yield even better results.

* Actor-Critic (A-C) Models: Implementing A-C architectures would be a logical next step,
as they combine the strengths of both policy-based and value-based methods to potentially
achieve more stable and efficient learning. Comparing a well-tuned A-C model against our
existing results would provide a clearer picture of the performance hierarchy.

e Deep RL with Pixel Data: To eliminate the need for manual feature engineering, future
work should explore an end-to-end learning approach using a Convolutional Neural Network
(CNN). By feeding raw pixel data from the game screen directly into the network, the agent
could learn its own hierarchical feature representations, a technique proven to be highly
effective in mastering complex visual environments like the Atari suite.

8.2 Sophisticated Optimization and Analysis

Future efforts could focus on more systematic and exhaustive optimization to push the performance
limits of the existing models.

» Automated Hyperparameter Tuning: Rather than manual tuning, employing automated opti-
mization techniques like Bayesian optimization or genetic algorithms could systematically
search the hyperparameter space to find the optimal configuration for each model, ensuring
that each is performing at its absolute peak.

* Advanced Feature Engineering: New, informative features could be engineered by creating
interaction terms from the existing state variables (e.g., the difference between the player’s
vertical position and the opening of the next barrier). This could provide the agent with
more salient information for making decisions.

» Extended Training and Convergence Analysis: Given that some models were still improving
at the 50,000-iteration cap, training the agents for a significantly longer duration would
allow us to fully map their learning curves and identify their true performance plateaus.
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Appendix A: Additional Plots for the Scores of All the Algorithms
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Figure 8: Q-Learning Means, Standard Deviations, and Extrema
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Figure 9: Q(\) Means, Standard Deviations, and Extrema
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Figure 10: Sarsa Means, Standard Deviations, and Extrema

Sarsa-Lambda Error Bars per Thousand Training Epochs
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Figure 11: Sarsa(\) Means, Standard Deviations, and Extrema
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Q-Learning Nearest Neighbors Error Bars per Thousand Training Epochs
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Figure 12: Q-Learning Nearest Neighbors Means, Standard Deviations, and Extrema

Q-Learning Function Approximation Error Bars per Thousand Training Epochs
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Figure 13: Action Value Function Approximation Error Bars Means, Standard Deviations, and Extrema
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Figure 14: Policy Gradient Error Bars Means, Standard Deviations, and Extrema

Q-Learning & Sarsa Evaluation per Thousand Training Epochs
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Figure 15: Q-Learning and Sarsa - 50k Training Epochs
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Figure 16: Q-Learning Error Bars - 50k Training Epochs
Sarsa Error Bars per Thousand Training Epochs
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Figure 17: Sarsa Error Bars - 50k Training Epochs
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Figure 18: Q-Learning Nearest Neighbors - 40k Training Epochs
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Figure 19: Policy Gradient Error Bars - 40k Training Epochs
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