
MangaNet: Building an Object Detection System for Mangas

Tai Vu
Computer Science

Stanford University
taivu@stanford.edu

Robert Yang
Computer Science

Stanford University
bobyang9@stanford.edu

Abstract

Object detection in mangas is a difficult problem due
to the large amounts of whitespace, the grayscale format,
large amounts of overlapping objects, and the large num-
ber of variants in shapes of objects. In this project, we
use a number of object detection models (FasterR-CNN,
RetinaNet, and YOLOv3) to localize and classify objects in
mangas as face, body, frame, or text. We also experiment
with techniques like transfer learning and data augmenta-
tion, and test out a featurizer based on a variant of Neural
Style Transfer. We find that YOLOv3 achieves the highest
performance with a mAP of 71.0 on the Manga109 dataset.

1. Introduction
In recent decades, the production of mangas has become

a large commercial industry that receives great public atten-
tion. In addition to offering fascinating plots and charac-
ter development, manga series are a means of popularizing
traditional and cultural values. The exponential growth of
digital technologies like iPhone, iPad, and Kindle has facil-
itated the distribution of comic products across the world.
Hence, building computer programs that can understand
manga contents has become an increasingly important task.

The recent advent of machine learning has driven major
advances in computer vision systems, which provide great
tools for automatic analyses of manga products [8]. In this
project, we will focus on the problem of object detection in
comic series using deep learning approaches.

We will develop convolutional neural networks (CNNs)
to detect the presence of certain elements in manga pages.
In particular, our models will take as inputs images from
manga series and outputs bounding boxes for all detected
objects and their corresponding labels. In this study, we
evaluate our algorithms on the Manga109 dataset [16, 19]
and consider four bounding box classes: “frame”, “text”,
“body”, and “face”.

There are four main difficulties of the Manga109 dataset

as compared to other object detection datasets. First, there
is a large amount of whitespace in manga sketches. This
makes it difficult for object detectors to latch on to textures
that may be useful for detecting objects, and outweighs the
seeming cleanness of the images. Second, with the excep-
tion of some title pages, most manga pages are drawn in
grayscale due to the high time cost of coloring. This means
that there is less information for the object detector to use,
and the object detector may not recognize objects that they
might have recognized if it was in color. Finally, mangas
have many overlapping objects, so it is very difficult to de-
tect the presence of each object individually. Finally, com-
pared to real-life photos, there are much more variants when
it comes to the shapes, sizes, forms and styles of manga
characters’ faces and bodies. These patterns pose a great
challenge to our models when detecting the presence of cer-
tain objects in comic pages.

We will train three different models (FasterR-CNN, Reti-
naNet, and YOLOv3) with variations (including transfer
learning and data augmentation) and compare the results.
We will also tailor our pipeline specifically for manga
comics by experimenting with Neural Style Transfer as a
featurizer for object detection in mangas.

2. Related Work
With the availability of massive data sets and the acces-

sibility of computing reesources, there have been a large
amount of research on deep learning based object detection
algorithms. Some common approaches include R-CNN [6],
Fast R-CNN [5], and Faster R-CNN [25]. These models ex-
tracted region proposals for each object in the input images,
and then feed them into a CNN network to produce out-
put labels. Another popular object localization algorithm is
YOLO [22], which joinly predicted bounding box coordi-
nates and class probabilities. Recently, a new CNN-based
technique called RetinaNet was proposed [10], which lever-
aged focal loss and achieved state-of-the-art outcomes in
object detection benchmark datasets.

Over the last few years, there have been a number of
studies on the application of machine learning and computer

1



vision algorithms in comic domains. For instance, Chu et al.
leveraged several features like speech balloons, shapes of
frames, and numbers of characters to analyze comic styles
[2, 3]. Meawhile, Arai & Tolle utilized graph-based con-
nected component detection algorithms on white and black
pixels to detect panels and balloons [1]. Similarly, Rigaud et
al. combined connected component labeling with k-means
clustering to improve the classification of texts and frames
[26]. These techniques work well with simple manga pages,
but fails when there are non-rectangular frames or complex
sets of objects. Other downsides of these approaches are
their slow runtime and relatively low performance, so they
are not practical for production use cases.

Other algorithms required several classical feature engi-
neering techniques to detect certain objects in comic pages.
For example, Sun et al. combined SIFT descriptors and
local feature matching to tackle the problem of character
detection and identification [28]. Likewise, Matsui et al.
harnessed EOH features and approximate nearest neighbor
search to localize characters’ faces and bodies [16]. While
these techniques are simple and do not require large train-
ing datasets, they are quite computationally inefficient and
do not generalize well to diverse sets of manga styles.

In addition, some recent research projects have focused
on the use of deep neural networks for comic analysis.
Nguyen et al. developed a YOLOv2 region proposal net-
work to detect bounding boxes around frames and char-
acters, which achieved a slightly better outcome than tra-
ditional feature engineering methods [18]. However, their
model focused more on color manga datasets and neglected
its application in black-and-white comics, which is the most
popular form of comic in the current market. Likewise,
Ogawa et al. experimented with several deep learning meth-
ods like SSD and YOLO for object localization in comic
pages [19]. Nonetheless, the use of deep learning for in-
depth analyses of manga products is a rather underexplored
domain. This motivated us to build CNN models to tackle
the task of object detection in manga images.

3. Dataset and Features

3.1. Data

We are using the Manga109 dataset [16, 19], which con-
sists of 10, 619 pages (images) of manga from 109 dif-
ferent Japanese books. Each image has a resolution of
1170 by 1654. Of these 10, 619 images, 10, 130 have a
nonzero amount of annotations. It is this condensed dataset
of 10, 130 that we are using. The dataset has four classes of
objects: ”frame”, ”text”, ”body”, and ”face”.

The annotations for each image are in the XML format,
which we later converted to CSV for more ease of process-
ing. Meanwhile, the dataset is split into 80% for training,
10% for validation, and 10% for testing.

Figure 1. An example in the Manga109 dataset [19]

3.2. Data Augmentation

We applied data augmentation techniques in order to pre-
vent overfitting and improved generalization power. These
techniques include randomly removing a fraction of pixels,
random affine transformations (translation, rotation, scal-
ing), changing brightness, and horizontal flipping.

3.3. Neural Style Transfer

Four difficulties of the Manga109 dataset (whitespace,
grayscale images, overlapping images, and a wide variety
of styles) were mentioned in the introduction. As a potential
solution to the first and second difficulties, we experimented
with using Neural Style Transfer as a featurizer. There has
been previous research in object recognition for objects ren-
dered in artistic modalities (cartoons and sketches) that sug-
gests style transfer as a possible method to increase the ac-
curacy of object detectors on sketches [30]. However, they
focused on generating training data (i.e. augmentation dur-
ing training). In contrast, we directly run all images in
the dataset through the MSGNet neural style transfer as a
preprocessing step to create a modified dataset identical in
structure to the original. This might be a solution to the first
and second difficulties of the Manga109 dataset. First, any
whitespace will be filled with the style that was transferred.
We theorized that this will make it easier for object detectors
to latch on to certain parts of the image. Second, style trans-
fer inherently comes with some minor colorization, which
may make it easier for the detector to see objects’ differ-
ences. One of the images that we chose as the style image
is shown in Figure 2.

4. Methods

Our main modeling approaches include Faster R-CNN
[25], RetinaNet [10], and YOLOv3 [24].

2



Figure 2. A style image.

4.1. Faster R-CNN

Faster R-CNN [25] is an end-to-end network with mul-
tiple modules: RPN (region proposal network) and Fast R-
CNN [5] (refining the bounding boxes and classification).
The two modules share most of the convolutional layers to
increase efficiency and performance.

The input to Faster-RCNN is a flexible size up to 1000×
600 pixels, which is fed into the convolutional stem (feature
extractor) that feeds into both the RPN and the Fast R-CNN
modules.

The Region Proposal Network (RPN) [25] took inspi-
ration from the concept of attention – it is responsible for
telling the Fast R-CNN where in the image to look. This
particular RPN of Faster R-CNN is different from previous
papers as it is a small fully convolutional network. It takes
a feature map as input from one of the later layers of the
feature extractor stem. Then, a 3×3 convolution is applied,
followed by two branches of 1 × 1 convolution. The first
branch is for ”box classification”, which outputs the prob-
abilities that the box contains an object or not. The second
branch is for ”box regression”, which finds the approximate
boundaries of any object in the box.

The Fast R-CNN module then takes as input the classi-
fication and regression results from the RPN as well as the
same feature map that was inputted to the RPN. It is respon-
sible for further refining the bounding boxes from the ap-
proximate boundaries that were generated by the RPN and
classifying objects into different classes. After a filtering
process to choose the boxes with the most confidence, the
resulting bounding boxes and classes are then outputted by
the network as the final output.

Faster R-CNN is trained with a joint loss calculated
from the RPN outputs (object likelihoods and approximate
bounding boxes) and the Fast R-CNN outputs (object class
likelihoods and exact bounding boxes). The RPN loss com-
ponent is calculated using random samples of 128 positive
and 128 negative boxes to avoid bias towards negative sam-
ples.

In the original Faster R-CNN paper, the feature extractor
used was VGG-16 [27]. In our study, we used ResNet-50
instead [7].

4.2. RetinaNet

RetinaNet [10] is a response to the major issue of imbal-
ance that has hampered the performance of models such as
YOLO and SSD. Its major innovation lies in the focal loss,
which allows the network to focus more on the misclassified
samples.

Models such as YOLO [22] and SSD [13] that are with-
out a sampling process suffer from an overwhelming num-
ber of candidate locations, most of which clearly do not
contain an object. This causes an imbalance, as ”easy” ex-
amples dominate the gradient and prevent the network from
properly learning from the more difficult examples. As a
result, training is less efficient and the model is weaker. Fo-
cal loss reduces impact of the examples where the model
is confidently correct, so that the impact of the examples
where the model struggles is proportionally larger.

Mathematically, focal loss is an extension of the cross
entropy loss − log(pt), where pt is defined as the probabil-
ity assigned to the correct class by the model. A ”modu-
lating factor” (1 − pt)

λ is used, so that at λ greater than 1,
when the probability assigned to the correct class is low, the
factor evaluates to one, while when the probability assigned
to the correct class is high, the factor evaluates to zero, sig-
nifying that there is no longer need to focus on this example
as much. In summary, the focal loss can be expressed as
L(pt) = −(1− pt)

λ log(pt).
The input to RetinaNet is flexible and dependent on the

type of feature extractor used but it prefers images of size
800×1333 or less. RetinaNet uses a FPN (Feature Pyramid
Network) [9] on a ResNet-101 [7] as its feature extractor,
a standard feature extractor for object detection. Then, it
has two branches to predict the bounding boxes (of output
size W × H × KA) and the classes respectively (of out-
put size W ×H × 4A) where W and H are the width and
height at that stage of the feature pyramid, A is the number
of anchors, and K is the number of classes.

4.3. YOLOv3

YOLOv3 [24] is an enhancement on the YOLO [22]
(”you only look once”) series of models. The YOLO frame-
work is a deliberately end-to-end one-stage model that has
advantages in simplicity, speed, and the amount of con-
textual information. It removes the region proposal step
found in 2-stage object detectors by using the features of
the entire image and using a grid system where each cell of
the grid gets a certain number of box predictions (where
each prediction includes the x-coordinate, y-coordinate,
width, height, and confidence, as well as class probabil-
ities). YOLOv3 is an update to previous YOLO models

3



(YOLO and YOLOv2 [23]) that includes a more power-
ful feature extractor with residual connections and feature
pyramids. YOLOv3 works optimally at an input resolution
of 416 × 416 pixels due to its grid structure, but can take
a wide range of inputs of any resolution (however, it then
resizes those inputs so the longest side is 416 pixels). Its
output is of shape 19 × 19 × 3 × (5 +K), where 19 × 19
comes from the grid format of YOLO while 3 comes from
the 3 layers of the feature pyramid and 5 +K comes from
the 4 bounding box coordinates plus an objectness proba-
bility and K class probabilities.

4.4. Neural Style Transfer (MSG-Net)

Neural style transfer is a technique that is used to com-
bine the content of one image with the style of another im-
age. Multi-style Generative Network (MSG-Net) [32] is an
improvement on the original neural style transfer algorithm
that introduces a 4-dimensional (instead of 2-dimensional)
Gram matrix called the ”CoMatch” layer to increase expres-
sivity of the network and increase detail of the generated
image.

4.5. Transfer Learning

We leveraged transfer learning to help the model learn a
better reepresentation of the image data. In particular, we
used Faster R-CNN, RetinaNet, and YOLOv3 modeels that
were pretrained on the COCO database [11] and then fine-
tuned their parameters on our downstream task.

4.6. Baseline Model

For the baseline comparison, we used the YOLOv2
model [23], which was tested in Ogawa et al [19]. The
YOLOv2 model has the same input format as the YOLOv3
model (explained in the above section) and outputs a 13 ×
13 × (5 + K) shape tensor where 13 × 13 is the grid size
used by YOLOv2 and 5 + K, like in YOLOv3, represents
the 4 bounding box coordinates, an objectness probability,
and K class probabilities.

5. Implementation

We developed our code in PyTorch [20] and Torchvi-
sion [15]. Our models were built on top of existing
implementations of Faster-RCNN [21], RetinaNet [15],
YOLOv3 [12], and neural style transfer with MSG-Net
[31]. We also used the Manga109 API [14] in our data
preprocessing pipeline. The code for our project can
be found at https://github.com/taivu1998/
MangaObjectDetection.

Model mAP
YOLOv2 (baseline) [19] 59.7
Faster R-CNN 57.4
Faster R-CNN (TL) 62.0
Faster R-CNN (TL + DA) 64.5
Faster R-CNN (TL + NST1) 55.4
Faster R-CNN (TL + NST2) 56.4
RetinaNet 57.4
RetinaNet (TL) 60.8
RetinaNet (TL + DA) 63.5
YOLOv3 (TL + DA) 71.0

Table 1. Results of our models compared to the baseline

6. Experiments
6.1. Experiment Setups

The Faster R-CNN model and the RetinaNet model were
trained for 10 epochs. We experimenting with training them
from scratch and fine-tuning models that were pretrained on
ImageNet. We optimized it using Adam optimization algo-
rithm with a fixed learning rate of 0.0001 (as this learning
rate gave the best performance during our hyperparameter
search) and a batch size of 8 (due to limited GPU memory).

We used a YOLOv3 model that was pretrained on Im-
ageNet and fine-tuned for 10 epochs. We used the Adam
optimizer with a learning rate of 0.001 and we used a batch
size of 16.

6.2. Evaluation Metric

Since this project addressed an object localization task,
we utilized Mean Average Precision (mAP) [4] as our quan-
titative evaluation metric.

To define mAP, we use the concept of Intersection over
Union (IoU), which is the ratio between the intersection and
the union of a predicted box and the corresponding ground
truth box. If IoU is higher than a given confidence thresh-
old (such as 0.5), we get a true positive, otherwise the box
is considered a false positive. All the objects that the model
misses are consider false negatives. By using this informa-
tion, we can compute the precision and recall scores of the
model’s predictions.

Subsequently, we select 11 different confidence thresh-
olds corresponding to 11 equally spaced recall levels
0, 0.1, 0.2, ..., 1. The mAP score is defined as the average
of the precision values at these 11 thresholds.

6.3. Results and Discussion

6.3.1 Differences in Performance through Model Ar-
chitectures

We observe that without transfer learning and data augmen-
tation, FasterR-CNN and RetinaNet achieved similar levels

4

https://github.com/taivu1998/MangaObjectDetection
https://github.com/taivu1998/MangaObjectDetection


of performances, with both scoring a mAP of 57.4. With
transfer learning, FasterR-CNN (with a mAP of 62.0) scores
slightly better than RetinaNet (with a mAP of 60.8), and
with transfer learning and data augmentation, FasterR-CNN
(with a mAP of 64.5) is also slightly better than RetinaNet
(with a mAP of 63.5). In the big picture, the differences be-
tween the mAP scores for FasterR-CNN and RetinaNet are
not that large, so they could be said to have similar perfor-
mance on this task of manga object detection.

We think that the similar performance comes from Reti-
naNet’s lack of focus on the easy examples. We originally
theorized that RetinaNet (due to its focal loss) would per-
form significantly better than FasterR-CNN, as our dataset
contains many easy examples (e.g. the frames of the manga)
and some harder ones (text, because they are small). How-
ever, we think that because of this very reason, RetinaNet
does not perform better than FasterR-CNN. Since a siz-
able proportion of the objects in the dataset are frames (the
easy examples), a lack of focus on these examples due to
the focal loss may cause RetinaNet to get some of these
wrong, offsetting the benefits that it gets from focusing on
the harder examples. Meanwhile, while FasterR-CNN may
get some of the harder examples wrong, it might be more
accurate on the easy examples, making the mAP look simi-
lar for both architectures.

We also observe that with transfer learning and data aug-
mentation, YOLOv3 (with a mAP of 71.0) performs far bet-
ter than FasterR-CNN (with a mAP of 64.5). We think that
the YOLOv3 achieved better outcomes than Faster-RCNN
due to the precence of overlapping objects in many exam-
ples. In fact, these overlapping objects confuses the re-
gional proposal process in Faster-RCNN, making less ef-
ficient in separating and recognizing each object individu-
ally. Originally, we theorized that FasterR-CNN would per-
form better because YOLOv3 was a one-stage detector and
thus leaned more towards speed than accuracy compared to
Faster-RCNN, a two-stage detector. However, we under-
estimated the sheer efficiency of the DarkNet53 backbone
[24].

We also see that with transfer learning and data augmen-
tation, YOLOv3 (with a mAP of 71.0) performs far better
than RetinaNet (with a mAP of 63.5). This result is interest-
ing because YOLOv3 has similar performance to RetinaNet
in [24]. It may be because YOLOv3, unlike the previous
version of YOLO, no longer struggles with small objects
(in our case, some ’text’ and ’face’ objects). Also, man-
gas are very context-dependent, so YOLOv3 with a wider
context can be able to consider more information and thus
become more expressive.

6.3.2 Transfer Learning

We observe that the addition of transfer learning has a ben-
eficial effect on model performance. Without transfer learn-
ing, our Faster R-CNN model achieved a mAP score of 57.4
on the validation set, which was quite close to but under the
baseline outcome of 59.7. With transfer learning, the Faster
R-CNN model achieved a mAP score of 62.0 (4.6 higher
than without transfer learning). Similarly, without transfer
learning, the RetinaNet model had a mAP score of 57.4,
but with transfer learning, the RetinaNet model had a mAP
score of 60.8 (3.4 higher).

This significant increase in performance is likely because
the pretrained models have learned better and perhaps more
general representations of images. We suspect this to be the
case as manga images are more similar than different, and
as such, are less able to teach models about general image
content and structure. Furthermore, the model that is trained
from scratch has to learn both the basic image structure and
the nature of the objects to detect, while in the same number
of epochs the pretrained model only has to learn about the
nature of the objects to detect, making it more difficult for
the model trained from scratch to get up to speed on the
task.

6.3.3 Data Augmentation

We can see that the addition of data augmentation has a ben-
eficial effect on model performance. Our Faster R-CNN
with transfer learning achieves a mAP score of 62.0, but
our Faster R-CNN with transfer learning and data augmen-
tation achieves a mAP score of 64.5 (2.5 higher). More-
over, our RetinaNet with transfer learning gets a mAP score
of 60.8, while our RetinaNet with transfer learning and data
augmentation achieves a mAP score of 63.5 (2.7 higher).

This significant increase in performance may be due to
the increased robustness of the models with data augmen-
tation. Manga images all have a similar general structure,
but there may be some images that are outliers to this struc-
ture. For one, different mangas are drawn with different av-
erage brightness levels, so doing augmentations on bright-
ness during training may induce the model to perform at its
best level during all kinds of brightnesses when testing.

6.3.4 Style Transfer

We observe that style transfer had a detrimental effect on
model performance. Our FasterR-CNN with transfer learn-
ing but without style transfer had a mAP of 62.0, while our
FasterR-CNN with transfer learning and style transfer with
style 1 had a mAP of 55.4 (6.6 lower) and our FasterR-CNN
with transfer learning and style transfer with style 2 had a
mAP of 56.4 (5.6 lower).

5



Figure 3. YOLOv3 train loss. X axis denotes the iteration number
and Y axis denotes the total training loss.

We think that the significant decrease in performance
comes from the addition of insignificant information and
the loss of important information due to the style transfer.
We originally theorized that style transfer would solve two
of the three major difficulties in object detection on mangas,
namely the large amount of whitespace in manga sketches
and the predominant grayscale tone of most mangas, since
it ameliorates the whitespace concerns by adding texture to
all spaces and partially fixes the grayscale tone through col-
orization. But, perhaps, the textural information that the
style transfer adds to the image may actually be irrelevant
to the image since it comes from another image, meaning
that the new textures, although covering the whitespace,
provides no new information. Meanwhile, the image may
lose information as style transfer mixes pre-existing tex-
tures with its own. For example, it may be harder to detect
text when the unique texture of text is overwritten by wavy
lines.

6.3.5 YOLOv3: Analysis of Training

In this section we analyze the training and validation of
YOLOv3, our best-performing model. For this analysis, we
trained YOLO an extra 5 epochs in order to better see the
trajectory of the plots for both the train loss and val mAP
7. The loss has three components: IOU, class, and object-
ness. As seen in figure 6, we see that the objectness classi-
fier learns the fastest, as the objectness loss drops to near the
minimum within 1000 iterations (approximately 2 epochs).
Whereas, as seen in figure 4, the IOU predictor trains a lot
slower. This is because predicting the IOU is a lot more
difficult than predicting the objectness score. The class loss
plots in figure 5 and the overall loss in figure 3 show similar
shapes and gradually decrease, which is a good sign.

We see that the val mAP increases even past 10 epochs.

Figure 4. YOLOv3 IOU loss. X axis denotes the iteration number
and Y axis denotes the IOU loss.

Figure 5. YOLOv3 train class loss. X axis denotes the iteration
number and Y axis denotes the class loss.

However, the rate of increase seems to be slow down, and
the validation mAP curve seem to be plateau, while the
training loss keeps decreasing. We suspect that our model
starts to overfit to the training data at this point.

6.3.6 Qualitative Analysis

Looking at the outputs of the models gives us more insights
into how they distinguish and localize different objects. In
general, our models achieve good performance in finding
objects in comic pages, drawing bounding boxes around
them, and classifying their types. As shown in Figure 8,
when the objects are well separated, our models were able to
localize them correctly. In addition, the models performed
extremely well in recognizing the presence of frames and

6



Figure 6. YOLOv3 train objectness loss. X axis denotes the itera-
tion number and Y axis denotes the objectness loss.

Figure 7. YOLOv3 val mAP scores. X axis denotes the epoch
number and Y axis denotes the mAP score.

Figure 8. An example where the model perform well

Figure 9. An example where the model fails to detect text

texts (see Figures 8, 9, and 10). This might bee because the
frames are normally rectangular with clear structures, while
characters’ faces have noticeable patterns and are separated
from each other.

However, the outcomes for the “text” class seem a bit
less desirable (see 9). While the models succeeded in both
cases, they sometimes failed to recognize texts because the
speech balloons have a color other than white (such as gray
color). When several speech balloons were too close to each
other, the models were not able to separate them and in-
stead consider them as one single text balloon. Similarly,
as shown in Figure 10, the models make errors in detect-
ing bodies when there are a lot of close human bodies in a
single panel. There was also an interesting case where the
model got confused by non=human objects like vehicles,
and assign the “body” label to them.

7. Conclusion & Future Work
In summary, we developed and compared several models

on the task of object detection on mangas. The best model
was YOLOv3 with transfer learning and data augmentation,
which attained 70.1 mAP on the Manga109 dataset. Many
of our models (FasterR-CNN TL, Faster R-CNN TL+DA,

7



Figure 10. An example where the model fails to detect body

RetinaNet TL, RetinaNet TL+DA, and YOLOv3 TL+DA)
beat the baseline of 59.7 mAP. We also tried neural style
transfer as a featurizer targeted specifically toward sketches
through its properties, but found through experimentation
that it was not an effective featurizer.

We acknowledge that the choice of style images may af-
fect the performance of the neural style transfer featurized
FasterRCNN. In the future, we can continue to try a more
diverse array of style images. We can also try fusing other
types of features (such as the Histogram of oriented gradi-
ents (HOG) [17], which has also been suggested as a pos-
sible featurizer for object detection) either with the output
from the backbone or the output before the final layer of
the second stage. In regards to FasterR-CNN [25], Reti-
naNet [10], and YOLOv3[24], we will further tune the hy-
perparameters and perform architecture search to increase
performance, and we can also try other model architectures
such as EfficientDet [29].

8. Contributions & Acknowledgements
Robert worked on developing the Neural Style Transfer

featurizer methodology (including preprocessing, develop-
ing the pipeline through the NST algorithm, and training

Faster-RCNN with NST). He also worked on preprocessing
for YOLO and training YOLO. Tai worked on preprocess-
ing the Manga109 dataset, implementing the data pipeline,
building the FasterRCNN and RetinaNet models, training
and tuning the models, and implementing various forms of
data augmentation. Robert and Tai both worked on writing
the report and planning the overall structure of the project.

As stated in Section 5, we made use of the following
frameworks and public code resources:

• PyTorch: https://pytorch.org/

• Torchvision: https://github.com/pytorch/
vision

• TorchVision Object Detection Fine-tuning Tuto-
rial: https://pytorch.org/tutorials/
intermediate / torchvision _ tutorial .
html

• PyTorch-YOLOv3: https : / / github . com /
eriklindernoren/PyTorch-YOLOv3

• PyTorch-Style-Transfer: https://github.com/
zhanghang1989/PyTorch- Multi- Style-
Transfer

• Manga109 API: https : / / github . com /
manga109/manga109api

References
[1] Kohei Arai and Herman Tolle. Method for real time text

extraction of digital manga comic. International Journal of
Image Processing (IJIP), 4(6):669–676, 2011. 2

[2] Wei-Ta Chu and Ying-Chieh Chao. Line-based drawing style
description for manga classification. In Proceedings of the
22nd ACM international conference on Multimedia, pages
781–784, 2014. 2

[3] Wei-Ta Chu and Wei-Chung Cheng. Manga-specific fea-
tures and latent style model for manga style analysis. In
2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1332–1336. IEEE,
2016. 2

[4] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 4

[5] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1, 3

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 1

8

https://pytorch.org/
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/zhanghang1989/PyTorch-Multi-Style-Transfer
https://github.com/zhanghang1989/PyTorch-Multi-Style-Transfer
https://github.com/zhanghang1989/PyTorch-Multi-Style-Transfer
https://github.com/manga109/manga109api
https://github.com/manga109/manga109api


[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[8] Jochen Laubrock and Alexander Dunst. Computational ap-
proaches to comics analysis. Topics in cognitive science,
12(1):274–310, 2020. 1

[9] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection, 2017. 3

[10] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1, 2, 3, 8

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 4

[12] Erik Linder-Norén. Pytorch-yolov3, 2021. 4
[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. Lecture Notes
in Computer Science, page 21–37, 2016. 3

[14] manga109. Manga109 api, 2018. 4
[15] Sébastien Marcel and Yann Rodriguez. Torchvision the

machine-vision package of torch. In Proceedings of the 18th
ACM international conference on Multimedia, pages 1485–
1488, 2010. 4

[16] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,
Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.
Sketch-based manga retrieval using manga109 dataset. Mul-
timedia Tools and Applications, 76(20):21811–21838, 2017.
1, 2

[17] Robert K McConnell. Method of and apparatus for pattern
recognition, Jan. 28 1986. US Patent 4,567,610. 8

[18] Nhu-Van Nguyen, Christophe Rigaud, and Jean-Christophe
Burie. Comic characters detection using deep learning. In
2017 14th IAPR international conference on document anal-
ysis and recognition (ICDAR), volume 3, pages 41–46. IEEE,
2017. 2

[19] Toru Ogawa, Atsushi Otsubo, Rei Narita, Yusuke Matsui,
Toshihiko Yamasaki, and Kiyoharu Aizawa. Object detec-
tion for comics using manga109 annotations. arXiv preprint
arXiv:1803.08670, 2018. 1, 2, 4

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019. 4

[21] PyTorch. Torchvision object detection fine-tuning tutorial,
2021. 4

[22] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1, 3

[23] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster,
stronger, 2016. 4

[24] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement, 2018. 2, 3, 5, 8

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: towards real-time object detection with region
proposal networks. IEEE transactions on pattern analysis
and machine intelligence, 39(6):1137–1149, 2016. 1, 2, 3, 8

[26] Christophe Rigaud, Norbert Tsopze, Jean-Christophe Burie,
and Jean-Marc Ogier. Robust frame and text extraction from
comic books. In International Workshop on Graphics Recog-
nition, pages 129–138. Springer, 2011. 2

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[28] Weihan Sun, Jean-Christophe Burie, Jean-Marc Ogier, and
Koichi Kise. Specific comic character detection using local
feature matching. In 2013 12th International Conference on
Document Analysis and Recognition, pages 275–279. IEEE,
2013. 2

[29] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781–10790, 2020. 8

[30] Christopher Thomas and Adriana Kovashka. Artistic object
recognition by unsupervised style adaptation. In Asian Con-
ference on Computer Vision, pages 460–476. Springer, 2018.
2

[31] Hang Zhang. Pytorch-style-transfer, 2017. 4
[32] Hang Zhang and Kristin Dana. Multi-style generative net-

work for real-time transfer. In Proceedings of the European
Conference on Computer Vision (ECCV) Workshops, pages
0–0, 2018. 4

9


