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1 INTRODUCTION

Recommendation systems in practice often rely on difficult-to-collect large-scale datasets in order to obtain a “critical

mass” of user preference and content information for high-quality recommendations. With smaller datasets, the

shortcomings of traditional recommendation systems begin to appear: sparsity of user preference matrices and item

content lead to ineffective recommendations in data-driven systems [1, 15] particularly for cold start users and items. A

large tail of niche application settings, such as the scientific and anime enthusiast communities, need recommender

models catered to the needs of smaller, dynamic communities while keeping the options of privacy or anonymity.

Existing approaches fail to provide cold start recommendations while maintaining the important needs of such

communities. Content-based cold start approaches [2, 14] rely on user content information, which is invasive on user

personal data, and does not work effectively in the setting of new users, for whom no preferences are given. Likewise,

collaborative filtering [5, 10, 16], which provides recommendations based on preference-based similarity to other users

or items, struggles with cold start users and items. While there are attempts to build more advanced recommendation

engines using hybrid methods [8, 19] and deep neural networks [17, 20, 22], research in alleviating cold start issues is

still limited. We introduce DeepNaniNet, which uses a deep neural architecture to handle cold start with the option

of learning rich content representations via a graph representation of the data, with edges linking users and items

as well as edges linking items to items representing related show suggestions, enabling joint consideration of these

data sources. We introduce neural language embeddings derived from BERT to represent both textual reviews, which

constitute the edges between users and optionally item-item recommendations, which constitute the edges between

items. The model is trained with WMF following previous successes[18][19]. Building on this framework, we introduce

tools for generalization to new users that avoid profile mining: 1. a representation scheme of users by their “content

basket”, a set of a user’s favorite items submitted to the service, with which to induce user representations, and 2. an
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autoencoder architecture to generalize to new users without requiring user metadata. To our knowledge, DeepNaniNet

is the first deep NLP driven anime recommendation engine. We further present AnimeULike, a new dataset of anime

reviews consisting of 10000 animes and 13000 users, on which the system achieves competitive user recall on both

warm and cold start animes and demonstrates a learnt ability to generalize to new anime on a thematic basis. On the

benchmark of CiteULike, the system achieves equivalent performance to DropoutNet’s SOTA cold start numbers and

avoids any performance drop upon introduction of out-of-matrix users. In realistic real world settings where half or

more users are either guests or have few suggestive interactions, DeepNaniNet proves to be the superior design. On

AnimeULike Warm Start, DeepNaniNet demonstrates near 7x user recall@100 over WMF and 1.5x over DropoutNet,

and further experiments indicate it is learning a rich user representation space in the process.

DeepNaniNet enables high-quality recommendations in the key stress areas for niche-community recommender

systems. First, it can make effective cold start recommendations for both new users and items. Second, it does so via a

privacy-preserving user experience and algorithm, which is crucial for both maintaining user anonymity and effectively

serving guest users. Third, it is able to jointly learn to encode diverse data sources during training for qualitatively

improved recommendation quality.

2 RELATEDWORK

2.1 Traditional Methods

The traditional class of solutions to building recommendation engines is collaborative filtering. Methods may model

user representations via Bayesian inference of user preferences [16], unsupervised clustering of users with similar

preferences [5] or latent semantic analysis [10]. Dimensionality reduction via factorization of the preferences matrix

has seen success in recommendation. Weighted Matrix Factorization (WMF) has been applied towards collaborative

filtering [12], and neural matrix factorizations have also been applied to recommendation [23]. Our method uses such

factorization approaches to provide relevance scores to learn during training. Nonetheless, collaborative filtering

approaches suffer from sparsity of user preference information. For example, user-user and item-item collaborative

filtering has no remedy for cold start users and items respectively when no preferences are available. Hybrid approaches

to the problem of cold start in recommendation systems integrate in both user preferences and item content. CTR [19]

integrates latent embeddings for users and items with probabilistic topic modeling. CTPF [8] identifies latent topics

and to form cross-topic recommendations. However, such methods introduce highly complex objective functions to

incorporate additional content and preference terms. In addition, these models only handle cold start items without

paying attention to cold start users.

2.1.1 Deep Learning Methods. Meanwhile, many works have applied deep learning to developing both content and

collaborative filtering-based recommendation engines, such as DeepMusic [17] and RNNs [22], and CDL [20], which

introduce various neural architectures to jointly learn content and preferences. Nevertheless, there have been limited

attempts to address the cold start problem directly in the training procedure. DropoutNet [18] demonstrated the SOTA

result in generalizing to cold start users and items by employing dropout at training time to reconstruct user-item

relevance scores. However, its shortcoming is in their sharp performance decline in situations where user content is not

available. The present work combines the cold start advantages of DropoutNet while avoiding existing problems of

privacy invasion posed by existing user content-based approaches [3][26].

2
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2.2 Inductive Graph Learning

Recently, general-purpose graph representation learning methods have been proposed for recommendation tasks. Pixie

[7] uses biased randomwalks in the user-item interaction graph to generate recommendation scores, but does no learning,

hence it cannot incorporate complex multimodal data end-to-end, and requires unwieldy hyperparameter tuning to

design appropriate random walks for novel recommendation settings. PinSAGE [24] combines Graph Convolutional

Networks [13] with efficient inference and curriculum training for web-scale recommendation. However, PinSAGE does

not explicitly address the cold start problem, which we aim to do in the present work. STAR-GCN [25] was proposed

to handle the cold-start setting for both users and items. In the spirit of such inductive graph learning techniques,

we leverage a graph neural network (GNN) architecture component to attain item feature representations that easily

generalize to the cold start setting, while able to be trained end-to-end with other multimodal data sources. In particular,

we make use of a GNN architecture based on GINEConv [11] to obtain node embeddings that encode textual information

features, corresponding to reviews, along graph edges. In contrast to general-purpose graph representation learning

methods, however, DeepNaniNet uses matrix factorization techniques which are more tailored to recommendation

tasks, leading to superior performance as demonstrated in the experiments.

3 DATASET

3.1 AnimeULike

We propose a new dataset of anime reviews and ratings for recommendation. The dataset represents an impactful real-

world recommendation setting which benefits a substantial niche community; it also carries key challenges of serving

cold start animes and out-of-matrix users, thus serving as a benchmark for the generalizability of recommendation

systems given sparse training data, with regard to privacy constraints. Here we describe the key properties and

construction of the dataset.

Collection Pipeline. We crawl a popular website of anime reviews and ratings, MyAnimeList.net, to obtain a rich graph of

users and animes (“items”) as well as textual reviews and synopses. Out of respect for MyAnimeList.net’s community, we

avoid scraping user profiles directly. Instead, we crawl the listings of top rated animes to discover users, and additionally

only save their id’s to disk.

User-Item Reviews. We obtain a graph of users and animes (items), connected by textual and numerical reviews. Our

pipeline crawls through each of the site’s top 10000 rated animes (as of Feb 2021). For each anime, we retrieve the

numerical features and synopsis from its “profile page” and crawl its “reviews page”, retrieving all available reviews,

each of which comes with a written body, reviewer username, and rating (truncating at page 50 on the reviews to

avoid spam). The list of users in the dataset is thus the set of all reviewers discovered this way. We send all users

encountered during this phase to an additional sub-pipeline that crawls their past reviews for additional ratings. This

way of extracting ratings from written reviews ensures ratings’ integrity and retrieval of text that is directly responsible

for predicting ratings. This collection step populates a preference matrix 𝑅 ∈ R𝑁×𝑀 whose rows are users, columns are

items and entries are numerical ratings from a given user to the given item.

Item-Item Recommendations. To retrieve recommendations between a pair of animes, we crawl the “userrecs" tab for

each of the 10000 animes’ pages, representing written recommendations between two animes submitted by users, then

concatenate all recommendations between each pair of animes into one body of text (made by 𝑘 recommenders —

we include 𝑘 as a metadata attribute num_recommenders). Those with num_recommenders=1 are ignored, lest they be

3
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Table 1. Anime dataset specification with examples. The item-item anime graph has 27266 edges for 10000 animes.

Section Description Specification Example Entry

User-Anime

Preferences

Rating (1-10, 0

for missing);

(optional) textual review

R

8; "First of all, I have seen the original FMA and

although it was very popular and original, the

pacing and conclusion did not sit too well

with me. . . "

Anime-Anime

Suggestions

Concatenation of all

written recommendations

made from anime1

to anime2

String

"Hunter x Hunter (2011)
Both are the best shounen in the world to me!

They start off with adventures of a brave main

character and go on into darker themes. . . .

Shingeki no Kyojin . . . "

Anime features

Numerical Features

(avg. rating, avg. rating

(rounded), #ratings,

rank, #members,

#favorites)

R6 (9.18, 9, 1, 3, 2277948, 185915)

Anime Textual

Content

Synopsis; Concatenation

of all written reviews

String

"’In order for something to be obtained, something

of equal value must be lost.’ Alchemy is bound by

this Law of Equivalent Exchange. . . ”

User ratings Anime ratings by given user R |𝑈
train/val/test | [9, 0, 0, . . . , 8, . . .]

User content basket Set of animes a user likes Set<Item Ids>

{Fullmetal Alchemist: Brotherhood, Hunter x

Hunter, Code Geass} (id mapped)

unsubstantiated or spam. This collection step results in a graph whose nodes are items and edges are annotated with

textual recommendations between pairs of items.

Features. Each anime page also comes with rich metadata and textual features. For each anime, we retrieved its MAL

ID, numerical features (average rating, popularity, rank, members, favorites), and all reviews concatenated as one

string. In total, we collected 27266 anime pairs (each a long text body). Each (anime 1, anime 2) pair comes with all

recommendations written on anime 1’s page for anime 2 (an undirected edge). Our entire pipeline is parallelized across

both sub-pipelines and runs in 20 mins. We also make the discovery and collection pipeline to be configurable. Our

final user-item graph for training only contains an id for each anonymized user id’s and the numerical rating (0-10)

given. Our compiled dataset and web crawling codebase will be released fully upon deanonymization.

Preprocessing. We first randomly split our dataset of 10000 top-rated anime shows into training, validation and test

with a 8 : 1 : 1 ratio, resulting in𝑀 train, 𝑀val
, and𝑀 test

animes in each split respectively. We apply weighted matrix

factorization (WMF) to approximate the training user-item rating matrix 𝑅train ∈ R𝑁×𝑀 train

, as a matrix product

𝑅𝑢,𝑣 ≈ 𝑈 train

𝑢 (𝑉 train

𝑣 )𝑇 , where the rows of 𝑈 train
and 𝑉 train

are dense latent representations of the 𝑁 users and𝑀 train

train set items, respectively.

3.2 CiteULike

In addition to our anime dataset, we tested our system on the CiteULike database [4]. This dataset contains 5551 users

and 16980 articles, and each user has, on average, 37 articles. We demonstrate that DeepNaniNet achieves superior

performance on widely-used benchmark CiteULike in the setting of out-of-matrix users, while preserving performance

4
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in the in-matrix case compared to the state of the art. To obtain item content 𝜙𝑉𝑣 , we follow DropoutNet [18] and run

SVD on the TF-IDF top-8000 matrix, with 300 components, on the associated documents for CiteULike.

4 DEEPNANINET: RECOMMENDATION FRAMEWORK

We propose a neural recommender system architecture, whose goal is to learn rich user and item representations

that can predict user-item preferences given possibly incomplete, heterogeneous information (in the form of item and

user content, or a partial view of user preferences). Within this system, we propose a “user content basket” technique

for making accurate recommendations to users requiring minimal personal information, as well as an embedding

dropout technique for improved out-of-matrix generalization. Together, these components form a robust system for

generalizable recommendations on smaller, heterogeneous datasets.

Preliminaries

We define the latent vectors obtained by WMF as 𝑈𝑢 ∈ Rℎ for the latent vector of user 𝑢 and 𝑉𝑣 ∈ Rℎ for the latent

vector of item 𝑣 . Let𝑉 (𝑢) be the set of all items user 𝑢 has interacted with𝑈 (𝑣) be the set of users an item 𝑣 has received

ratings from. We presume that each item has an associated content vector denoted 𝜙𝑉𝑣 . Depending on the dataset, each

user may come with an associated content vector denoted 𝜙𝑈𝑢 too.

Architecture

The architecture consists of a user encoder and an item encoder. Each encoder takes in a list of known user-item

preferences 𝑈𝑢 and 𝑉𝑣 respectively, as well as a representation of any associated content (textual reviews or item-item

suggestions), and outputs a latent embedding for the given user or item.

User and Item Encoder. For each user𝑢, the user encoder takes in its latent embeddings𝑈𝑢 from the user-item preferences

matrix, as well as its user content vector Φ𝑈𝑢 (if provided), and outputs an encoder embedding𝑈𝑢 ∈ R𝑟 , as shown in green
in Fig 1. The encoder proceeds as follows dropout. The user preferences vector𝑈𝑢 is passed through a Dropout layer

(rate 𝑃𝑢 ). The resulting user preferences vector after dropout is given by �̃�𝑢 (see below). The user preferences vector after

dropout �̃�𝑢 is fed into a neural network layer 𝑓𝑈

(
�̃�𝑢

)
:= tanh

(
𝑊𝑈 �̃�𝑢

)
to produce an intermediate representation, and

user content Φ𝑈𝑢 is fed into a neural module 𝑓Φ𝑈

(
Φ𝑈𝑢

)
:= tanh

(
𝑊 Φ
𝑈
�̃�𝑢

)
. The feature representations are concatenated

and fed into a final layer 𝑓U : the output is given by:

𝑈𝑢 = 𝑓U
( [
𝑓𝑈 (𝑈𝑢 ) ; 𝑓𝜙𝑈

(
𝜙𝑈𝑢

)] )
:= tanh

(
𝑊U

[
𝑓𝑈 (𝑈𝑢 ) ; 𝑓𝜙𝑈

(
𝜙𝑈𝑢

)] )
(1)

where [; ] denotes concatenation. Similarly, for each item 𝑣 , we pass 𝑉𝑣 and Φ𝑉𝑣 to obtain 𝑉𝑣 ∈ R𝑟 , as shown in blue in

Fig 1. Following prior work [18], we standardize 𝑈 ,𝑉 and apply batch normalization after 𝑓𝑈 , 𝑓𝑉 , 𝑓𝜙𝑈 , 𝑓𝜙𝑉 with 500

output units for 𝑓𝑈 , 𝑓𝑉 and rank 𝑟 = 200 output units for 𝑓𝜙𝑈 , 𝑓𝜙𝑉 .

Content Encoder. We experiment with choices for the content encoder 𝜙𝑉 . When the content is textual (CiteULike

documents or textual anime reviews), we take these functions to be either a BERT encoder or SVD on the tf-idf scores.

Both methods take in a textual document and output a vector corresponding to that document, which we take as 𝜙𝑉 .

For BERT, we carry out a comparison of pretraining and finetuning strategies in the experiments to identify the most

effective method for generalization to niche textual datasets.

5
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In particular, for the BERT encoders, we leveraged the pretrained weights of BERT in HuggingFace [21] and finetuning

it on our downstream task. In addition, we domain adapted our BERT models on all the texts in our dataset using masked

language modeling [6], and then used these in-domain transferred models as our content encoders, with additional

finetuning on the AnimeUReallyLike subdataset.

When the content is a graph 𝐺 = (𝑉 , 𝐸) (item-item suggestions for anime), with associated node feature matrix 𝑋 ,

we compare the following graph neural networks (GNNs) to provide the content vectors Φ𝑣 :

• Graph Convolutional Network [13]. The GNN takes in (𝐺,𝑋 ) and a given item 𝑣 and outputs an embedding for

the item, 𝑓𝜙𝑉

(
𝜙𝑉𝑣

)
:= 𝐴ReLU

(
𝐴𝑋𝑊0

)
𝑊1 for a two-layer GNN, where𝑊0 and𝑊1 are learnable parameters and

𝐴 is the adjacency matrix after preprocessing according to [13].

• GINE [11]. When there are additional features𝑉𝑢,𝑣 for each edge (𝑢, 𝑣) ∈ 𝐸, we use GINE, which takes in (𝐺,𝑋,𝑉 )
and a given item 𝑣 and outputs an embedding for the item, which we take as 𝑓𝜙𝑉

(
𝜙𝑉𝑣

)
. GINE performs multiple

updates of the form:

𝑥𝑘+1𝑖 ← ReLU

©­«ℎ ©­«𝑥𝑘𝑖 +
∑

𝑗 ∈𝑁 (𝑖)
ReLU

(
𝑥 𝑗 +𝑉𝑗,𝑖

)ª®¬ª®¬ (2)

where 𝑥𝑘
𝑖
is the embedding for the item after each layer 𝑘 , ℎ is a neural network layer and 𝑁 (𝑖) are the neighbors

of node 𝑖 in 𝐺 . We take 𝑓𝜙𝑉

(
𝜙𝑉𝑣

)
= 𝑥𝐾𝑣 after a fixed number of GNN layers 𝐾 .

Since availability of (item, item) edge content is contingent on the dataset, we concactenate 𝑓𝜙𝑉

(
𝜙𝑉𝑣

)
to the inputs

to 𝑓𝜙𝑉 and later explore its ablation.

Relevance Score Prediction. Given user 𝑢 and item 𝑣 , the goal of the model is to predict the relevance score between the

two. Given the output of the user and item encoders, we efficiently compute this score as𝑈𝑇𝑢 𝑉𝑣 , as shown in fig 1.

Our Solution for Cold Start

For guest users (for whom 𝑈𝑢 is not available), we set 𝑈𝑢 = 0 and train our model to periodically "drop out" 𝑈𝑢 by

relying on 𝜙𝑈𝑢 instead. Once a few interactions are collected, the user transform approximation𝑈𝑢 ≈ 1

|𝑉 (𝑢) |
∑
𝑣∈𝑉 (𝑢) 𝑉𝑣

is taken instead - and vice-versa for cold start items. This is the approximation used by [18] before each re-computation

of WMF. We propose a new solution via an extension of the model’s architecture instead.

User Content Basket. One key insight is to model the user content as the average of its user’s corresponding items:

𝜙𝑈𝑢 = E𝑣∈𝑉 (𝑢)𝜙
𝑉
𝑣 ≈

1

|𝑉 (𝑢) |𝜙
𝑉
𝑣 . (3)

This representation is advantageous from a modelling perspective because 𝜙𝑈 , 𝜙𝑉 are in the same latent space, making

the model more compatible with the autoencoder-inspired objective. This design decision also eliminates complications

in user experience, with no privacy invasion from social profile mining, implications for user churn rate via soliciting

for preferences or reduced service quality from exploration approaches that are difficult and expensive to implement. In

particular, “guest users” who do not have prior information in the system can voluntarily submit a “content basket”

𝑉 (𝑢) consisting of a small set of items that they prefer for inference.

Learning to Generalize. At training time, we explicitly train the model’s ability to generalize to new items by performing

one of three possible options:

6
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• Leave all embeddings as is.

• User Dropout:

(
𝑉𝑣, 𝜙

𝑉
𝑣

)
→

(
mask(𝑉𝑣), 𝜙𝑉𝑣

)
(with probability user_drop_p).

• Item Dropout:

(
𝑈𝑢 , 𝜙

𝑈
𝑢

)
→

(
mask(𝑈𝑢 ), 𝜙𝑈𝑢

)
(with probability item_drop_p).

We note [18] instead trains for cold start via training with both dropping out𝑈𝑢 and the “user transform” (𝑈𝑢 , 𝜙𝑈𝑢 ) →(
1

|𝑉 (𝑢) | ·
∑
𝑣∈𝑉 (𝑢) 𝑉𝑣, 𝜙

𝑈
𝑢

)
and vice-versa “item transform” for out-of-matrix (unfactored) items. our solution has no

need for this as inference is made solely with 𝜙𝑈𝑢 instead, with no loss of performance in reconstructing 𝑈𝑇𝑢 𝑉𝑣 . We

perform element-wise masking on (user_drop_p and item_drop_p) samples per minibatch to train for cold start (despite

𝑉 val/test

𝑣 = 0 and/or 𝑈 val/test

𝑢 in that setting). We observe improved cold start generalization this way with mask =

Dropout(drop_p), which contrasts with [18]’s mask = 0. Later, we apply mask(𝑈𝑢 ) = 𝑈𝑢 +Gaussian Noise (𝜇 (𝑈 ), 𝜎 (𝑉 ))
to how these masking choices reveal DeepNaniNet’s characteristics of a denoising autoencoder.

Training

To train the model, we minimize the loss:

𝐿 =
∑
(𝑢,𝑣) ∈𝑆

(
𝑈𝑇𝑢 𝑉𝑣 −𝑈𝑇𝑢 𝑉𝑣

)
2

(4)

via stochastic gradient descent, where 𝑆 is a set of training users and items. Intuitively, the learned embeddings should be

able to reconstruct those learned by WMF, hence achieving the recommendation quality of WMF when full preferences

are available. However, unlike WMF, the generalization ability of the neural framework will allow the model to make

predictions about users not seen during training, as will be demonstrated in the experiments.

We note that the loss function is expensive to compute in practice, due to summing over 𝑂 (𝑁𝑀) terms. Hence,

we approximate the loss via negative sampling, where 𝑆 consists of 𝑘 positive examples (pairs (𝑢, 𝑣) with nonzero

preference matrix entry) and 5𝑘 negative examples (pairs with zero entry).

Throughout all experiments, we keep the same hyperparameters as in DropoutNet [18] (e.g. dropout of 0.5), including

the model architecture (single hidden units of 500 units), layer architecture (linear + batch normalization + tanh), and

training data (as per trained WMF features and train/validation splits for CiteULike cold start), for consistency of

evaluation. We follow the same practice of batching by users for each user sampling a fixed number of items, but differ

in that we make sure each pass sees all true positive interactions. Unlike DropoutNet, we train without momentum

for batch SGD, which we found to work better given this batching scheme. We sample random items at a ratio of 5:1

positives to negatives per epoch, ensuring each user sees a diverse set of item candidates. This setup achieves superior

performance on AnimeULike while reproducing reported results on DropoutNet.

5 EXPERIMENTS

We run several experiments on both the anime and scientific article domains to understand generalization performance

in terms of cold start and out-of-matrix users. Furthermore, we demonstrate robustness of the model to corruption

rate. We run ablations to demonstrate the efficacy of our encoder components (GNN and domain-adapted BERT

representations) in representing 𝜙𝑉 and 𝜙𝑈 . Finally, we qualitatively analyze the method’s recommendations in the

case of AnimeULike and AnimeUReallyLike.
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Fig. 1. DeepNaniNet: Item content featurized by concatenating encoding with graph embedding
(Edited on top of DropoutNet paper’s diagram [18])

5.1 Evaluation method

We adopt user-oriented recall@K as our default quantitative metric (reported results set K=100 to stay consistent with

prior work[18][19]) and analyze qualitative patterns in a later section. We evaluate methods along two main scenarios.

• In the warm start setting, the system has observed the preferences 𝑈𝑢 for the user to retrieve recommendations

for (resp. 𝑉𝑣 for items). Optionally, the system can incorporate user content 𝜙𝑈𝑢 (resp. 𝜙𝑉𝑣 for item content).

• In the cold start setting, the system has observed no preferences for the user to retrieve recommendations for (i.e.

𝑈𝑢 = 0, resp. 𝑉𝑣 = 0 for items) and thus must rely solely on content 𝜙𝑈𝑣 (resp. 𝜙𝑉𝑣 ). In cases where 𝜙𝑈𝑢 (or 𝜙𝑉𝑣 ) is

not available, inference would not be possible. To address this, past approaches have proposed approximations of

𝑈𝑢 as the user’s preferences become available. Instead, DeepNaniNet represents users via their content baskets

(see Techniques for Improved Generalization), enabling effective inference in this setting from the very start.

5.2 Preprocessing

For the anime dataset, we split the 10000 animes into train-val-test via a 8:1:1 split. We apply WMF on the training

preference matrix (of size 12767 × 8000), excluding users who did not rate any items in the training set, to obtain a

latent user matrix𝑈 train
and latent item matrix 𝑉 train

. For warm start, we include 1000 validation animes (leaving out

1000 for future experiments) and follow the same procedure as[18][19] to refactorize a 12767 × 9000 matrix and test on

fold 1 (all cases nearly the same). We explicitly prevent corner cases where a user may be left with no animes to form

his/her content basket. On average, the size of the user’s content basket is 5.3 in the cold start train fold, 0.6 in the cold

start val fold, 4.8 on the warm start train fold, and 1.1 on the warm start validation fold.

We now define some important hyperparameters. For DropoutNet, we define user_transform_p as the rate by which

we substitute user vectors via a “user transform” 𝑈𝑢 ≈ 1

|𝑉 (𝑢) |
∑
𝑣∈𝑉 (𝑢) 𝑉𝑣 (abbrev. “UT” in experiments), its proposed

approach to handling out-of-matrix users. We drop out user embeddings in𝑈 with probability user_drop_p and item

embeddings in 𝑉 with probability item_drop_p. For DeepNaniNet, which utilizes the content basket representation,

we take𝑈𝑢 = 0 for out-of-matrix users at inference time (hence such users are represented entirely by 𝜙𝑈𝑢 ).
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5.3 Experiments

5.3.1 CiteULike Cold Start. The user transform (UT) approximation used in DropoutNet, while resulting in performance

gains for out-of-matrix users, causes a a significant performance drop for in-matrix users, hence cannot serve both classes

of users simultaneously. This suggests that DropoutNet overfits to 𝑈 , and approximations of the user representation

𝑈𝑢 (even by a good approximation since |𝑉 (𝑢) | ≈ 30 for CiteULike), poses a significant handicap. Poor out-of-matrix

performance also has negative consequences for industrial models, necessitating that they be retrained entirely after

each computation of𝑊𝑀𝐹 as𝑈 and 𝑉 shift due to evolving distribution of users and documents over time.

Table 2. On recommendation for CiteULike, DeepNaniNet gracefully
handles both the in- and out-of-matrix cases, achieving comparable or
favorable performance in both cases. In contrast, DropoutNet is not
able to handle both cases simultaneously, even with the user transform
technique for handling out-of-matrix users, due to the overfitting to𝑈 .

In-matrix 50%-50% Out-of-

matrix

DN (no UT) 62.1 59.1 56.7

DN (UT) 7.7 30.9 55.4

DNN 61.3 61.2 61.0

In realistic real world settings where up to half

of users could be guests, this limitation implies the

impracticality of serving guest or newly registered

users (for whom there are no or few interactions)

without either a) recomputing𝑊𝑀𝐹 after sufficient

exploration or b) finding more invasive ways to ob-

tain better user representations. While DropoutNet

holds onto a slight edge in the case of all in-matrix

users (despite DeepNaniNet having access to 𝑈 all

the same), we see this as a positive indication that

DeepNaniNet is instead learning a rich latent space

beyond merely information contained in 𝑈 or 𝑉 .

5.3.2 AnimeULike Warm Start. We next compare anime recommendation performance in the warm start setting. For

AnimeULike, we keep the same setup as before. We experimented with both TF-IDF and transferred BERT as the content

encoder. Our base model experiments reveal transferred BERT as the better 𝜙𝑉 anime2vec encoder for both DropoutNet

and DeepNaniNet (whereas in the CiteULike domain, TF-IDF has the edge). Thus, to put the best foot forward for both

models, we fix the domain-adapted BERT as the anime2vec encoder for all warm start AnimeULike experiments.

Table 3. AnimeULike: Warm Start. DeepNaniNet surpasses Dropout-
Net for both in-matrix and out-of-matrix users. In brackets are prelimi-
nary runs with tf-idf as the content encoder.

Method In-matrix Out-of-matrix

WMF 9.4 8.1

Popularity sort N/A 2.4

Random guessing N/A 1.1

DN 38.3[/37.6] 36.7[/36.4]

DN (UT) 37.5 36.9

DN (added GNN) 42.0 39.2

DN (added GNN, UT) 41.0 39.1

DNN (removed GNN) 64.3[/61.0] 61.4[/60.9]
DNN (V=0) 63.3 61.1

DNN (full) 64.2 59.7

Our initial observation is the magnitude-fold im-

provement over the WMF baseline. In [18], only a

0.001 improvement is made over the WMF baseline

on warm start. The poor metrics of WMF warm start

recommendations seems consistent with users’ expe-

riences using our demo, with one user source com-

menting, "I typed in Flip Flappers and it just gave me

the FMAB, AOT S3.5, and AOT S4 despite them being

the exact opposite of what I’m looking for. Looks like

it just picked the top 3 rated shows from MAL." As

the popularity sort baseline shows, correlation with

popularity is low, so methods like WMF and CF that

learn off of preference overlap between users perform

poorly. The sparsity ( 5 items/user for warm start)

and stochasticity of user anime interactions produces

9
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much poorer approximations of 𝑈 and 𝑉 than as in CiteUlike, forcing the autoencoder to rely on content instead. This

is substantiated by the fact DeepNaniNet jumps to over double the performance of DropoutNet from the very start.

We run each model the same number of updates until performance plateaus. While DropoutNet makes up for a little

differential, it’s clear by now using content baskets is the superior design. Visually, there’s a large separation between

the two families of models’ performances. Adding GNN to DN helps some, but the performance bottleneck is most likely

the expressiveness of𝑈 , hence leading us to conclude our performance owes itself to the content basket representations.

This suggests our model is constructing a rich shared representation space between (𝜙𝑉 , 𝜙𝑈 ) and (𝑉 ,𝑈 ) from the start,

exhibiting the ideal behavior of a denoising autoencoder and thus avoiding the discussed pitfalls of overfitting to𝑈 or𝑉 .

In fact, we observe swapping 𝑉𝑣 = 0 at evaluation time not only doesn’t hurt performance but increases it marginally.

Table 4. DeepNaniNet is robust to noise cor-
ruption of up to ≈ 70% samples.

Corruption rate

0.1 62.7

0.3 63.1

0.5 64.0

0.7 64.3

0.9 63.3

To further explore this hypothesis in isolation, we ran experiments cor-

rupting inputs 𝑈 (by Gaussian noise of equal mean and std) and confirm a

pattern: not only does corrupting𝑈 not hurt performance, but seems to boost

performance, with a 0.7 corruption rate equivalent to our best model overall.

This suggests the autoencoder quickly discerns𝑈𝑢 is mostly noise, and adapts

faster to the rich representational space constructed off of our deep encoders,

resulting in a higher performance in the end. At the same time, too much

corruption reveals diminishing returns: the autoencoder still requires partial

observability of𝑈 to bridge the latent spaces.

Our only surprise is that incorporating graph representations didn’t

seem to help, hence the relational information in the anime-anime suggestion graph may be more useful for

recommending new animes rather than established ones, as will be demonstrated in the cold start setting.

5.3.3 AnimeULike Cold Start. Next, we demonstrate the improved generalization ability of DeepNaniNet in the cold

start setting, particularly in handling out-of-matrix users.

Table 5. AnimeULike Cold Start. DeepNaniNet achieves superior out-
of-matrix recommendation performance on anime recommendation
while maintaining high in-matrix performance.

Method In-matrix Out-of-

matrix

Popularity sort 13.8

Random guessing 10.0

DN (no UT) 44.1 48.5

DN (UT) 42.6 48.4

DNN (removed GNN) 47.9 52.0

DNN 55.1 56.5

We observe superior performance of DNN (re-

moved GNN) which omits the GNN representation

of the item-item graph, surpassing DropoutNet. As

established in the previous section, we confirm con-

tent baskets to be the superior design for cold start

as well. When trained with user transform to han-

dle out-of-matrix users, DropoutNet deteriorates on

in-matrix users as a result and fails to deliver the in-

tended boost on out-of-matrix users. DeepNaniNet,

on the other hand performs better for both in-matrix

and out-of-matrix user representations, whereas on

CiteULike it just maintains in-matrix performance.

Most intriguingly, it appears on cold start items, both

DropoutNet and DeepNaniNet prefer their respective

out-of-matrix representations of users (user transform
1
and𝑈𝑢 = 0, respectively). We discuss the fascinating implication

1
It may be the case on AnimeULike,𝑈𝑢 is basically noise already, so DropoutNet can’t overfit to𝑈 , causing the user transform approximation to help to

an extent.
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of this in a later section. Our further experiments with GNN on out-of-matrix user representations demonstrated the

best results of all: 0.565 user recall@100 which highlight the true advantage of jointly learning anime representations

via our item-item graph. We believe this is due to GNN’s ability to inductively generalize to new users. In particular, if

new users have connections to similar items as users in the training set, the model is inductively biased towards making

similar predictions for such users [9]. In summary, DeepNaniNet’s superior performance across both in-matrix and

out-of-matrix users suggest it has constructed a richer user representational space, separate from𝑈 , from which it can

better reconstruct relevances in the original space, in conjunction with rich anime content 𝜙𝑉𝑣 .

5.3.4 AnimeUReallyLike. Lastly, we experiment with finetuning BERT as part of an end-to-end model. This implies

end-to-end backpropagation to parameters of 𝜙𝑉 (and thereby 𝜙𝑈 ) via sampled content baskets.

We take a small, selected sample of 10287 (user, item) training entries and 5585 validation entries from AnimeULike

that are thresholded with true relevances of >10 or <-6. We denote this small dataset of "extreme" relevances (either a

user really hates or loves an anime) asAnimeUReallyLike and train differential language encoders for the challenging

task of predicting these "extreme" preferences. Due to the resource constraints of training BERT, we leave out recall as

it is not competitive and instead on preliminary findings with the validation mean square error relevance loss.

Table 6. Loss curves are running averages over 50 batches to account for sampling stochasticity, trained with Adam optimizer. We
found this sampling strategy achieves lower loss. Table losses are lowest achieved averages (green star in plot). For the finetuned
models, we impose a 0.99 learning rate decay on BERT’s unfrozen layers initialized at 1e-4.

Models (fix drop_p=0.75)

MSE 4

(drop_p = 0)

MSE

(drop_p = 0.25)

MSE

(drop_p = 0.5)

MSE

(drop_p = 0.75)

MSE

(drop_p = 1)

bert/bert_static, drop_p = 0 10.363 9.947 10.628 9.689 10.716

bert/pretrained_bert_static, drop_p = 0 10.034 10.480 10.310 9.915 10.207

bert/bert_finetune, drop_p = 0 10.304 10.446 10.134 9.816 11.029

bert/pretrained_bert_finnetune, drop_p = 0 10.595 9.934 10.519 9.913 10.183

All encoders report lower losses when drop_p=0.75 as opposed to 0.5, attesting to the richer representations being

learned via end-to-end backpropagation of sampled content baskets to content representations. Relatively, the loss

curves suggest finetuning our domain-adapted BERT to be the superior choice for downstream training.

While static BERT reports the single lowest value, downstream layers immediately overfit due to the language

encoder’s out-of-distribution representations. This can thus complicate attempts of online learning that periodically
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Table 7. Transfer-finetuned BERT anime2vec: (node, edge) encoder choices, (AnimeUReallyLike)

(drop_p=0.5/drop_p=0.75) TF-IDF BERT static BERT finetuned BERT transfer static BERT transfer finetuned

TF-IDF (9.721/9.953) (9.911/9.863) (10.247/8.883) (9.424/9.586) (10.070/10.265)

Table 8. To test the ability to reconstruct extreme relevances (i.e. a user’s favorite show, or an item’s most fervent rater), we consider
the metrics of items/user MRR and users/item MRR relative to baseline encoders.

Model TF-IDF

TF-IDF +

GNN

TF-IDF +

EdgeConv

Static

BERT

Fine-tuned

BERT

Static

Pre-trained BERT

Fine-tuned

Pre-trained BERT

MRR

(Items/User)

2.2e-4 (2.5e-4) 2.3e-4 3.2e-4 2.2e-4 2.5e-4 4.0e-4 5.2e-4

MRR

(Users/Item)

4.1e-4 (1.6e-4) 3.6e-4 8.7e-4 11.5e-4 8.7e-4 2.6e-4 2.3e-4

update our model to adapt to distributional shift. Meanwhile, fine-tuning BERT directly causes too large a domain shift

in 𝜙𝑉 for tuning downstream layers (tested by independent experiments with separate learning rate schedulers for

BERT layers). Instead, we advocate for finetuning our domain-adapted BERT, which consistently reports low variance

and the smoothest validation loss curve across runs, as shown. Settling on the domain-adapted BERT as our anime2vec

encoder, we ran experiments over all node feature encoders as well, and observed consistently lower losses with TF-IDF

as the node encoder. We suspect this to be a form of feature fusion where TF-IDF features supplements the fine-tuning

BERT anime2vec.

The expected result of random guessing is in parentheses. Despite seeing only a small subset (4592 positive, 6235

negative entries), these models fare multiples better than random chance. Transferring BERT in-domain is advantageous

for retrieving a user’s top show due to pretraining on a diverse set of high quality user reviews. Moreover, the BERT

models outshine TF-IDF in at least one MRR department. We suspect that while TF-IDF is a better comprehensive

encoder in non-semantic domains (i.e. CiteULike) due to high correlation in features, it struggles to find a decision

boundary in semantic domains where most tokens appear in both extremely positive and extremely negative cases.

Thus, a second case for deep language encoders is their complex non-linear decision boundaries that excel in semantic

settings. We discuss these advantages further in the section below.

6 DISCUSSION

6.1 Qualitative Analysis

In our app, the user experience using DeepNaniNet with WMF and top-K CF feels drastically different. Users have

complained WMF only returns what’s already popular. While top-K CF’s recommendations feel a bit more intentional

(as adopted by the best attempts to build anime recommendation engines like here), it achieves little more than

recommendations you may get after consulting multiple friends. Our approach consistently captures underrated anime

(ones that fly under the radar but when you look into its synopsis, is thematic), making its high recall numbers all the

more impressive. As an example, our prior prototype (which recommended exclusively from the top 250 shows for

more traction) produced the following when querying with two highly regarded shounens.
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["Fullmetal Alchemist Brotherhood" (FMAB)
2
, "Shingeky No Kyojin" (AoT/Attack on Titan)]⇒

• WMF: 1) Haikyuu, 2) Hunter x Hunter
3

• Top-K: 1) Mushishi, 2) Stein’s Gate, 3) Haikyuu, 4) Hunter x Hunter
4

• DeepNaniNet: 1) Hajime no Ippo
5
, 2) Nana

6
, 3) Gintama

7

We make the following generalizations: WMF is biased towards popular anime. Top-K is biased towards highly rated

anime with lots of item-item recommendations, while DeepNaniNet seems capable of actually reading information on

other shows and outputting thematically similar (and often underrated) shows. Perhaps the biggest advantage of Deep-

NaniNet comes from the fact it actually represents all available information word-for-word to make recommendations.

This avoids content popularity biases and consistently outputs underrated shows. However, it also comes with high

sensitivity to strong sentiment and word-level mentions, esp. on AnimeUReallyLike. An example is when running the

AnimeUReallyLike model on the same query set [’Fullmetal Alchemist Brotherhood’, ’Shingeky No Kyojin’] (FMAB and

AoT), two of the highest rated/regarded shounen series of all time. We observe:

• TF-IDF GNN: A Farewell to Arms
8
, Armored Trooper Votoms

9
, Hotori

10
, Sailor Moon SuperS the Movie

• TF-IDF GINE: Armored Trooper Votoms
11
, A Farewell to Arms, Slayers, Patlabor: The Movie

• Finetuned BERT: Royal Space Force
12
, Desert Punk, Ginga Eiyuu Densetsu

13
, Mobile Sui Gundam

14
, Azur Lane

15

• Fine-tuned transferred BERT: .hack//Sign, .hack//Quantum, Fate/Zero, .hack//Liminality, .hack//Gift

We observe GNN GINE both converge on a similar set of results that all common themes of military, humanity’s

war, revolution, etc. Reading FMAB and AoT’s descriptions, we see these themes present in their synopses: "military

allies, colonel, lieutenant, nationwide conspiracy, state, law" and "humanity, extinction, defensive barriers, fight for

survival, Survey Corps, military unit, brutal war, walls". Fascinatingly, we observe plot-level similarities with FMAB

and Hotori. FMAB is about two brothers who lost parts of their physical bodies. "It is the hope that they would both

eventually return to their original bodies..." whereas Hotori has this identical element.

TF-IDF seems capable of capturing similarities from narrow dimensions (such as shallow mentions of military

themes), even if those dimensions are not the central themes of either FMAB or AoT.

2
FMAB is rated #1 on MAL all-time and AoT is trending #1 in popularity.

3
Both Haikyuu and Hunter x Hunter are among the most popular shounen.

4
Mushishi is irrelevant in content but has a lot of item-item edges (preferred by CF) hence a diverse rater base. Stein’s Gate is highly regarded but not

action/adventure shounen, again demonstrating the popularity bias.

5
Highly underrated shounen!

6
A lesser known slice of life, has a synopsis that says two girls travelling together in search of one girl’s boyfriend (note: FMAB’s synopsis talks about

two brothers travelling together in search of the philosopher’s stone!)

7
A bit of an offbeat satirical shounen that pokes fun at other shounens!

8
A Farewell to Arms: a story of "power suit-wearin’ men tasked with disarming automatic tanks in a post-apocalyptic Tokyo"

9
Armored Trooper Votoms: set in "a century of bloodshed between warring star systems... flames of war..." where "a special forces powered-armor pilot is

suddenly transferred into a unit engaged in a secert and highly illegal mission to steal military secrets..." (you get the idea)

10
Hotori: At the Personality Plant, robots are being built and slowly outfitted with the artificial memories of real people." The main character, Suzu, "is

one such robot."

11
Armored Trooper Votoms: set in a city "built form the labors of mechanical beasts... with incredible destructive power as a new type of advanced

weaponry"

12
Royal Space Force: Protagonist is part of the country’s space force, who embark on a mission to redeem humanity by restoring its strength

13
Ginga Eiyuu Densetsu: About a coup staged by the National Salvation Military Council under the direction of the Galactic Empire, happening during

civil wars in both the Alliance and the Empire

14
Mobile Sui Gundam: About a space immigrant who joins the League Militaire, a militia frustrated with their empire’s cruelty, who fights to bring an

end to the Zanscare Empire’s reign

15
Azur Lane: pits "a divided humanity" which "stood in complete solidarity" against "an alien force with an arsenal far surpassing the limits of current

technology"; with countries joining forces, "paving the way for the improvement of modern warfare"... during "neverending conflict within humankind"

(basically if FMAB and AoT had a baby... this would be it!)
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Fine-tuning BERT, meanwhile, captures similarity across more complex dimensions. The shows are more

diverse in plot while rooted in common themes across militant conflict, failure of government, humanity, and revolution.

At the same time, this turned out as an adversial example for the transferred BERT encoder. We discovered the

synopses and reviews for shows within the ".hack" franchise (aptly named) repetitively refer to the series as a whole,

making the language encoder sensitive to its mentions as opposed to learning each show’s distinct content, resulting

in the four of them to be recommended together. Looking past that, Fate/Zero is a very good recommendation
16
.

Nonetheless, this adversarial example poses a concern of using deep language encoders four our system. We are

motivated to pursue, as a direction of future study, the effect on recommendations due to the encoder’s sensitivity to

word mentions or extreme forms of sentiment.

6.2 Applications

Our system is extremely practical for inference: only 𝜙𝑉 ,𝑈 ,𝑉 needs to be cached (only the latter two for in-matrix

users) and an additional step of computing 𝑈 off of 𝜙𝑉 for guest users with the option of approximating ˆ𝑈𝑔𝑢𝑒𝑠𝑡 ≈
1

|𝑉 (𝑢𝑔𝑢𝑒𝑠𝑡 |
∑
𝑣∈𝑉 (𝑢𝑔𝑢𝑒𝑠𝑡 ) 𝑉𝑣 . This enables parallelism for faster retrieval. This is a huge win for SaaS recommendation

services bootstrapping off minimal user data. We envision the flourishing of open-source representations for popular

items across popular culture and media, enabling more niche services to experiment with ways of content basket design

for satisfying more domain-specific tastes. Guest users can then experiment and enjoy high-quality recommendations

with these services without fear of being mined of personal data.

For large companies, this can avoid many of the privacy concerns and technical pains of storing, managing, and

exploiting a customer’s entire lifecycle on the application. As companies adopt more content-based recommendation

systems, we believe latent modelling of 𝜙𝑈 conditional on context (i.e. 𝜙𝑈𝑢 =
∑
𝑣∈𝑉 (𝑢) 𝑓 (𝑣 |𝑢, 𝑐)𝜙𝑉𝑣 weighted content

baskets) can design more intentional recommendations (as in Spotify’s user explanatory framework) dependent on a

user’s context 𝑐 (i.e. "looking for fantasy" or "pumped up").

Due to our strong performance on cold start, we believe content creators and advertising channels can use services

built off this model to test potential audience traction with new types of content, whose deep representations avoid the

negative feedback loop of collaborative-filtering approaches.

7 CONCLUSION

We introduced DeepNaniNet, a neural recommender system framework for reconstructing user-item preferences via

rich content encodings, and our techniques for better cold start generalization. We replicated DropoutNet’s SOTA cold

start results on CiteULike, where our model maintains equally strong performance across the out vs. in-matrix users,

hence outperforming DropoutNet in the realistic real-world setting where 50% of users are guest users. We introduced

AnimeULike, a dataset rich in content but sparse in preferences, and demonstrated strong performance on both warm

and cold start - notably a 7-fold improvement over the WMF baseline - including further experiments revealing rich

properties of a denoising autoencoder. We demonstrated further gains in generalization to cold start items via jointly

learnt graph representations. Finally, we made the case for deep, differentiable language encoders and feasibility for

end-to-end training. Lastly, we close with our motivation that started it all: to deliver more meaningful, personalized,

and engaging content for users (whether old, new or guest) without compromising our principles for user privacy.

16
Fate/Zero: not only thematically similar (war, battle royale, etc.) but is regarded as a crossover between both FMAB and AoT: exploration of deep

themes and unapologetic cruelty
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