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Abstract

Speech emotion recognition (SER) has been a
challenging problem in spoken language pro-
cessing research, because it is unclear how hu-
man emotions are connected to various compo-
nents of sounds such as pitch, loudness, and en-
ergy. This project aims to tackle this problem
using machine learning. Particularly, we built
several machine learning models using SVMs,
LTSMs, and CNNs to classify emotions in hu-
man speeches. In addition, by leveraging trans-
fer learning and data augmentation, we effi-
ciently trained our models to attain decent per-
formances on a relatively small dataset. Our
best model was a ResNet34 network, which
achieved an accuracy of 66.7% and an F1
score of 0.631.

1 Introduction

In recent decades, the advent of machine learning
technologies has accelerated research in spoken
language processing. In particular, the applications
of neural network architectures like CNNs (LeCun
et al., 1995), LSTMs (Hochreiter and Schmidhu-
ber, 1997), and Transformers (Vaswani et al., 2017)
have led to major advancements and desirable out-
comes in automatic speech recognition and speech
synthesis programs.

One interesting area of spoken language research
is speech emotion recognition (SER). This problem
involves classifying emotions like ”happiness” or
”anger” based on audio clips of human speeches.
This is a highly important task, because enabling
computers to understand human emotions can help
facilitate communication between humans and ma-
chines. However, while there has been significant
research in building AI-powered emotion detection
systems, closing the gap between AI performance
and human performance still proves to be challeng-
ing, due to the ambiguity and complexity of human
emotions.

Therefore, in this project, we developed sev-
eral machine learning models that utilized SVMs,
CNNs, and LTSMs for automated emotion classifi-
cation in human speeches. We also implemented
transfer learning and data augmentation techniques
during the training process, which allowed our
models to achieve good performances with little
training data.

2 Related Works

Over the last few years, there have been a in-
creasing number of studies on speech emotion
recognition (SER). For instance, Schuller et al.
(2003) leveraged a Hidden Markov Model (HMM)
to extract features from speech signals and used
them to detect emotions. More recent research
has utilized Mel Frequency Cepstral coefficients
(MFCCs), which has proven very useful in auto-
matic speech recognition. Specifically, Demircan
and Kahramanli (2018) extracted MFCCs from the
EMO-DB dataset, and then combined them with
fuzzy C-means clustering and k-nearest neighbors
(kNN) for emotion prediction.

Meanwhile, together with recent breakthroughs
in deep learning, many studies have focused on
leveraging the power of neural networks for emo-
tion classification. Particularly, Lim et al. (2016)
applied CNN and LSTM network layers on top of
short-time Fourier transform representations of the
EMO-DB raw audio data. This approach demon-
strated great improvements in predictive accuracy
over traditional classification methods. However,
most of those deep learning based systems required
a large amount of training data in order to achieve
high performances. Our project was different, be-
cause we trained our machine learning models on
a relatively small database. We will demonstrate
that incorporating data augmentation and transfer
learning can effectively enable our systems to over-



come the lack of data, address overfitting issues,
and attain decent performances.

In addition, a number of studies have focused
on building multimodal systems that harness addi-
tional information from videos or texts to improve
speech emotion classification. For example, Kim
et al. (2013) combined hand-crafted speech fea-
tures such as pitch, energy, and mel-frequency filter
banks (MFBs) with facial landmark features from
videos. On the other hand, Tzirakis et al. (2017)
leveraged 1D convolutional layers to encode fea-
tures from speeches, while using ResNet50 to ex-
tract visual information from video frames. The
combined features were passed through an LSTM
module to perform final prediction. While this
multimodal approach led to some improvements in
accuracy levels, it is crucial to note that visual and
textual information is not always available. There-
fore, building audio-only emotion detection sys-
tems is highly important for use cases where we
only have audio data. This insight motivated us to
develop and train our machine learning models to
output correct emotion labels solely based on input
audio clips without using any visual or textual data.

3 Approach

3.1 Models

Our machine learning system included an encoder,
which was followed by a classifier. The encoder
received an audio clip and then produced a vec-
tor representation of the input data. Subsequently,
this encoding was fed into the classifier, which out-
putted an emotion label.

Model 1: MFCC and SVM

As a starting point, we implemented the feature
extractor using the Mel Frequency Cepstral Coeffi-
cients (MFCC). Afterwards, we took the averages
of these MFCC input features across the time di-
mension and then used them to train a Support
Vector Machines (SVM) model (Boser et al., 1992)
to classify different emotions.

Model 2: Log mel spectrograms and LSTM

Our second model encoded each data point by com-
puting a mel-scaled spectrogram and then convert-
ing it to log space. We built an LSTM neural net-
work as our classifier. This network contained 2
bidirectional LSTM layers, followed by a dropout
layer, a linear layer, and a softmax layer.

Figure 1: Log mel spectrogram features of an example.

Model 3: Log mel spectrograms and CNN
In this model, we also extracted log-scaled mel
spectrograms for the input speech data. Since these
features were similar to 2D image arrays (shown in
Figure 1), we then fed them into a CNN classifier
in order to obtain emotion labels. Previously, we
intended to put raw waveforms directly through the
CNN model. However, during our experiments, we
found out that training the CNN on log-scaled mel
spectrograms was easier and more stable.

We chose ResNet34 (He et al., 2016) as our CNN
architecture. Additionally, we experimented with
two different approaches: training a ResNet34 net-
work from scratch and using transfer learning to
finetune a ResNet34 model that was pretrained on
the ImageNet database (Russakovsky et al., 2015).

3.2 Data Augmentation
As we developed and trained our models on a small
speech dataset, data augmentation would be helpful
in generating more training data and dealing with
overfitting problems.

Image-based Data Augmentation
In particular, since our CNN models were trained
on image-like 2D arrays of log-scaled mel spec-
trograms, we applied several data augmentation
methods on these input data, which include rotat-
ing by a small degree, zooming in, and changing
brightness. Although such image-based augmen-
tation techniques were more common in computer
vision tasks and were not directly applied to audio
data, we will demonstrate in Section 5.4 that these
techniques indeed helped prevent overfitting and
improve model performance.

Progressive Resizing
Another augmentation method that we used was
progressive resizing (Colangelo et al., 2021).



Specifically, we first trained the CNN models on
smaller versions of the log-scaled mel spectrogram
arrays (128 × 128), and then finetuned the net-
works on arrays of larger sizes (256× 256). This
approach not only augmented the training data, but
also allowed the models to train much faster.

Mixup
In addition, we harnessed Mixup, a data augmen-
tation technique that generated convex combina-
tions of pairs of training examples and their la-
bels (Zhang et al., 2018). Particularly, for two
randomly sampled data points (xi, yi) and (xj , yj),
this method constructed a new example of the form:

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

Here, xi, xj are input vectors, yi, yj are one-hot
label encodings, and λ ∈ [0, 1]. In this way, Mixup
acted as a regularizer that encouraged the linear
behaviors of the models, reduced their variance,
and enhanced their generalization powers.

4 Implementation

I implemented the code for this project in Python
using PyTorch (Paszke et al., 2019), FastAI
(Howard and Gugger, 2020), Scikit-learn (Pe-
dregosa et al., 2011), Librosa (McFee et al., 2015).
All the code can be found here.

5 Experiments

5.1 Data

In this project, we used the Ryerson Audio-
Visual Database of Emotional Speech and Song
(RAVDESS) database (Livingstone and Russo,
2018) and the Surrey Audio-Visual Expressed Emo-
tion (SAVEE) database (Jackson and Haq, 2014).
We combined them into a single dataset for training
and testing our models.

RAVDESS is an English language database that
contains 1440 utterances. This dataset was made
by 24 actors (12 female and 12 male), who said
two sentences ”Kids are talking by the door” and
”Dogs are sitting by the door” with various emo-
tions. Meanwhile, the SAVEE database consists of
480 audio clips created by 4 male actors, and each
of them recorded 15 sentences. There are 8 differ-
ent emotion classes, including neutral, calm,
happy, sad, angry, fearful, disgust, and
surprised.

Figure 2: Distribution of emotion labels in the dataset.

The duration of each utterance ranges from 3 to
5 seconds. The total duration of audio recordings is
roughly 2 hours. In addition, we can see in Figure
2 that most of the emotional classes are relatively
well balanced. The neutral and calm labels
contain slightly fewer audio clips than the other 6
classes.

We split the dataset into 90% for training, 5%
for validation, and 5% for testing.

5.2 Experiment Details
For the SVM model, we produced 20 MFCCs for
each input audio clip. We chose an RBF kernel for
the SVM algorithm.

For the LSTM and CNN models, we generated
128 mel bands when converting input speeches to
mel spectrograms. We trained the LSTM model
and the vanilla CNN model (with no pretraining)
for 200 epochs. Meanwhile, for the ResNet34
model that was pretrained on ImageNet, we fine-
tuned its weights for 30 epochs. We used a batch
size of 64 and a learning rate of 0.001, with a decay
rate of 0.9. We trained the above neural networks
using the Cross Entropy loss and the Adam opti-
mization algorithm (Kingma and Ba, 2014).

5.3 Evaluation Methods
Since this project tackled a classification prob-
lem, we used classification accuracy scores and
F1 scores for evaluating model performance.

5.4 Results
As shown in Table 1, the SVM algorithm produced
an accuracy of 51.7% and an F1 score of 0.509.
This result was better than we expected, because
the model only took into account the mean values
of the MFCC features across the time dimension.
In other words, the SVM algorithm did not get
access to useful temporal dependencies amongst

https://github.com/taivu1998/ML-SER


Models Accuracy F1 Scores
SVM 51.7% 0.509
LSTM 52.8% 0.497
CNN (trained from scratch) 45.8% 0.426
CNN (transfer learning) 57.3% 0.528
CNN (transfer learning, data augmentation) 66.7% 0.631

Table 1: Performance of different models on the validation set.

the input MFCC features, but still learned to predict
emotions with more than 50% accuracy.

After that, the LSTM model performed slightly
better than the SVM algorithm, with a higher accu-
racy of 52.8% and a comparable F1 score of 0.497.
When investigating its training process, we can see
that the performance was still quite low because
the LSTM network was overfitting to the training
data. In particular, the model learned to decrease
training losses to a small value (around 0.5), but
the validation losses were still high (around 2.9).

A similar pattern occurred for the vanilla CNN
model (with no pretraining), as it only produced
45.8% accuracy. In this case, another issue is that
because the training set was too small, the Resnet34
network was not able to learn good representations
of the speech contents, so it could not generalize
well to unseen data.

In fact, when we finetuned the ResNet34 model
with pretrained weights from ImageNet, the per-
formance went up significantly (57.3% in accuracy
and 0.528 in F1 score). Therefore, we can see that
the neural network learned useful feature represen-
tations of the speech data after being pretrained
on a large database like ImageNet. When it was
finetuned on our small dataset, the model was able
to transfer its prior knowledge about images to
reading and extracting information from image-like
log-scaled mel spectrogram arrays. The finetuning
process then helped the model to adapt to the do-
main of our dataset even better, which enhanced its
performance.

Finally, the ResNet34 model with both transfer
learning and data augmentation achieved the best
performance, with an accuracy of 66.7% and an
F1 score of 0.631. This illustrates the effectiveness
of data augmentation techniques in boosting our
model performance. Indeed, as we can see in the
upper plot of Figure 3, the ResNet34 network with-
out data augmentation was still overfitting, with
low training loss values and high validation loss
values. This means that the gap between the train-

Figure 3: Training and validation losses across 30
epochs for the ResNet34 model without data augmen-
tation (upper) and with data augmentation (lower).

ing losses and the validation losses was still very
large. However, this problem was alleviated with
the support of data augmentation, as shown in the
lower plot of Figure 3. Both the training losses and
the validation losses decreased gradually, and the
gap between them was significantly narrowed.

Meanwhile, because the accuracy of our final
model was less than 70%, there is still a lot of
room for improvement. One of the main chal-
lenges faced by our models was that RAVDESS
and SAVEE were two simulated datasets, which
consisted of several actors repeating the same sen-
tences with various emotions. Hence, the speech
contents in these datasets were not diverse enough
for our machine learning programs to learn proper
representations of input audio data and detect cor-
relations between human speeches and emotions.
In addition, we can observe in Figure 4 that the



Figure 4: Confusion matrix for the best CNN model.

Figure 5: The waveforms of a neutral utterance (upper)
and a calm utterance (lower) from the same actor.

ResNet34 model performed well on certain posi-
tive classes like surprised, happy, and calm,
while produced lower accuracy on some other neg-
ative classes like disgust and angry. Further-
more, there was some confusion between certain
pairs of emotion labels, such as neutral and
calm. This issue is understandable, because the
audio clips from these two classes in our dataset
often sound similar. Two examples from those two
classes are shown in Figure 5.

6 Conclusion

Overall, in this study, we developed a number
of machine learning models, including SVMs,
LSTMs, and CNNs, for inferring emotions from
human speeches. Our models were trained and eval-
uated on small dataset created from the RAVDESS
and SAVEE databases. Our best model was a
ResNet34 neural network, which achieved an accu-
racy of 66.7% and an F1 score of 0.631. This is a
promising result, given the small size of our train-
ing set. With more training data, the model will def-
initely be able to learn better and recognize emotion
classes with higher accuracy levels. In addition, we

demonstrated the benefits of transfer learning and
data augmentation in boosting model performance.
Particularly, transfer learning allowed the model
to overcome the lack of audio data and learn good
feature representations of speech contents, while
data augmentation helped create more training ex-
amples, prevent overfitting issues, and enhance the
robustness and generalization of the model.

The next step would be performing more hyper-
parameter tuning in order to improve our current
models. Additionally, we are interested in exper-
imenting with a combination of CNN or LSTM
layers for better performances. Furthermore, given
the great advantages of data augmentation, we want
to implement several audio-based data augmenta-
tion techniques such as pitch shift, change in loud-
ness, change in speed, and SpecAugment (Park
et al., 2019), as they might be able to further re-
duce overfitting and generalization errors in our
training pipeline. Finally, because transfer learning
is also beneficial, we would like to finetune some
pretrained speech models such as wav2vec (Schnei-
der et al., 2019) and SpeechBERT (Chuang et al.,
2019), and see how they perform in the speech
emotion recognition task.

7 Contribution

Because this is a solo project, I (Tai Vu) imple-
mented the entire code for the project, including
data preprocessing, data pipeline, training pipeline,
machine learning models, and evaluation.
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